Xin Cheng – Environmental geochemistry – Best Researcher Award

Xin Cheng - Environmental geochemistry - Best Researcher Award

Chengdu University of Technology - China

AUTHOR PROFILE

SCOPUS

SUMMARY

Xin Cheng is a geochemistry specialist with significant research achievements in environmental geochemistry and atmospheric science. Work focuses on pollution assessment, geochemical behavior of elements, and the relationship between microbial diversity and soil contamination. Contributions include multidisciplinary approaches combining geochemical modeling, isotopic tracing, and environmental monitoring. Recognized for rigorous analytical methods and impactful findings published in reputed journals, advancing knowledge in ecological and environmental risk studies. Affiliated with the College of Ecology and Environment at Chengdu University of Technology, with over a decade of research experience spanning academia and applied geosciences.

EDUCATION

Completed B.Sc., M.Sc., and Ph.D. in Geochemistry at Chengdu University of Technology, China. The academic path spanned from 2005 to 2017, providing a strong foundation in geochemical theory, laboratory techniques, and environmental applications. Research training during these years emphasized elemental cycling, pollution characterization, and isotopic analysis, setting the stage for further investigation into atmospheric and soil contaminants. Doctoral work refined capabilities in data interpretation and environmental field studies, contributing to published research in both national and international platforms.

PROFESSIONAL EXPERIENCE

Serving at the College of Ecology and Environment, Chengdu University of Technology since 2017. Responsibilities include conducting field research, supervising students, publishing scholarly articles, and participating in environmental impact assessments. A key contributor to the academic community through teaching and collaborative research projects. Work involves close partnerships with interdisciplinary teams addressing contamination from mining, industrial waste, and nuclear facilities. Experience includes handling advanced instrumentation, sample preparation, and statistical analysis of environmental data for policy-relevant outcomes.

RESEARCH INTEREST

Research spans environmental geochemistry, urban pollution, atmospheric particulates, and microbial interactions with contaminants. Investigations target heavy metals, uranium enrichment, antimony pollution, and geochemical transformations in industrial zones. Emphasis on Southwest China as a region of study due to its unique geological and industrial settings. Interests also extend to risk assessment methodologies, isotopic fingerprinting, and the role of soil microbiota in contaminant dynamics. Goals include understanding pollutant pathways and informing remediation strategies for environmental sustainability.

AWARD AND HONOR

While specific awards are not detailed in the CV, recognition comes through high-impact publications and consistent contribution to environmental science. Publication in journals such as Science of the Total Environment and Aerosol and Air Quality Research signals peer acknowledgment. Collaborative authorship with national research figures and repeated first-author credits reflect academic standing. Participation in major environmental projects and conference presentations suggests further accolades at institutional and scientific levels, contributing to visibility in the geochemistry research community.

RESEARCH SKILL

Expertise includes environmental sampling, geochemical analysis, and isotope geochemistry. Skilled in the use of modern analytical tools for pollutant detection and quantification, including mass spectrometry and spectroscopic methods. Proficient in data modeling, GIS-based mapping, and risk evaluation frameworks. Able to interpret complex datasets linking geochemical patterns with anthropogenic activities. Strong background in collaborative and interdisciplinary research, integrating microbiological and geophysical insights to tackle environmental challenges with robust methodology.

CONCLUSION

Xin Cheng demonstrates a clear trajectory of impactful research in environmental geochemistry, especially within complex polluted ecosystems. Integrates diverse methodologies to assess and mitigate contamination risks, offering valuable scientific input for environmental management. Professional presence in both academic and applied sectors strengthens the role as a thought leader in geoscience. Ongoing research promises continued contributions to pollution control and sustainable environmental practices. A suitable candidate for recognitions related to environmental and geochemical research excellence.

Li Fangfang – Hybrid Renewable Energy Systems – Outstanding Scientist Award

Li Fangfang - Hybrid Renewable Energy Systems - Outstanding Scientist Award

China Agricultural University - China

AUTHOR PROFILE

SCOPUS
ORCID
GOOGLE SCHOLAR

SUMMARY

Research has focused on water resource management, hybrid renewable systems, and climate-related hydrological dynamics. Core achievements include developing optimization algorithms for multi-reservoir operations, refining predictive models using artificial intelligence, and implementing climate-adaptive energy models. The interdisciplinary approach bridges hydrology, computer science, and ecological policy, resulting in scalable innovations. Publications reflect leadership in water engineering and climate resilience, with frequent citation and application in regional planning. The contribution supports carbon neutrality strategies, efficient energy grid management, and ecological conservation. Collaborative international efforts emphasize global applicability and practical relevance of research findings in policy, technology, and environment.

EDUCATIONAL BACKGROUND

Academic foundation includes a bachelor’s and doctoral education in Hydraulic & Hydrology Engineering from Tsinghua University. Postgraduate experience was enriched by visiting scholar positions at National Tsinghua University (Taiwan) and Cornell University, where interdisciplinary collaboration enhanced research scope in civil and environmental engineering. These experiences shaped a strong foundation in hydrologic systems, computational methods, and applied modeling. The academic training emphasizes problem-solving, innovation, and global cooperation. Exposure to both Chinese and Western scientific methodologies allowed for integration of diverse strategies in environmental assessment and water resource optimization.

PROFESSIONAL EXPERIENCE

Career includes progressive roles from postdoctoral fellow to professor at China Agricultural University. Notable appointments include joint postdoctoral research with China Three Gorges Corporation and leadership as Associate Dean at Shihezi University. Recently appointed as a visiting scholar at the University of Cambridge, furthering expertise in engineering research. The professional trajectory reflects a commitment to academic excellence and interdisciplinary advancement. Contributions span teaching, administration, and cutting-edge research. Roles have fostered collaboration across academic, governmental, and international sectors, promoting impactful work in hydrology, energy systems, and environmental sustainability.

RESEARCH INTEREST

Primary interests include optimization of water resource systems, uncertainty modeling in hydro-PV-wind energy networks, and climate change’s impact on hydrological systems. Recent studies explore atmospheric water resources, precipitation variation, and vegetation-climate interactions. Incorporates artificial intelligence, game theory, and machine learning to enhance predictive capacity. Interests also include sustainable energy structures and environmental impact assessment. Commitment lies in addressing global climate challenges, improving energy efficiency, and developing tools for smart environmental management. The research bridges engineering innovation with ecological stewardship, contributing valuable insights to sustainable development and water-energy nexus.

AWARD AND HONOR

Recognized for excellence in both research and leadership, LI FANGFANG has been invited for prestigious academic roles and collaborations, including the University of Cambridge visiting position. Honors include recognition for work on atmospheric water resources and hybrid renewable systems. Research is frequently cited and published in high-impact journals, signaling acknowledgment from the global academic community. Contributions have influenced national energy policies and international sustainability frameworks. The work stands as a benchmark in renewable energy optimization and water system resilience. Ongoing collaborations further amplify visibility and academic distinction across engineering and climate sciences.

RESEARCH SKILL

Skilled in multi-objective optimization, computational hydrology, data-driven energy modeling, and AI-integrated forecasting methods. Proficient in simulation tools, image processing, and algorithm development for system efficiency and ecological stability. Expertise spans both theoretical framework development and real-world application, particularly in hybrid hydro-PV-wind system design. Demonstrates mastery in handling uncertainty, integrating environmental variables, and building intelligent systems. Strong command over tools like MATLAB and machine learning platforms enhances capability to model complex systems and extract actionable insights. These skills support scalable solutions across water management, renewable energy, and environmental engineering sectors.

CONCLUSION

The career of LI FANGFANG is a model of scientific rigor and societal relevance. With a foundation in hydrology and a vision for sustainable development, research has significantly advanced global knowledge in water-energy systems. Through academic leadership and international cooperation, plays a pivotal role in guiding climate-resilient solutions. Publications, tools, and frameworks developed are not only academically sound but also industry-applicable. The work contributes to a future where environmental challenges are met with intelligent, optimized, and collaborative approaches. The career continues to inspire innovation in environmental engineering and renewable energy management.

Kaouther Chebbi – Corporate enviromental strategies – Best Researcher Award

Kaouther Chebbi - Corporate enviromental strategies - Best Researcher Award

King Faisal University - Saudi Arabia

AUTHOR PROFILE

GOOGLE SCHOLAR
SCOPUS

SUMMARY

Kaouther Chebbi is a distinguished academic specializing in corporate finance, sustainability, and governance. Her academic journey spans Tunisia, Saudi Arabia, and France, reflecting both academic rigor and international exposure. She currently holds the role of Associate Professor at the University of King Faisal, Saudi Arabia. With a rich background in research and teaching, she has contributed extensively to areas such as ESG practices, cash management, and investor behavior. Her research integrates macroeconomic insights with firm-level analyses, showcasing a dynamic and impactful career trajectory shaped by interdisciplinary collaboration and policy-relevant inquiry.

EDUCATION

Kaouther Chebbi has built her academic credentials through degrees and training focused on economics, finance, and management. Her early academic roots were established at the Faculty of Economic and Management of Mahdia, Sousse University in Tunisia. She later expanded her expertise through research internships at IPAG Business School in Paris and the Champagne School of Management in Troyes, France. These academic experiences have significantly influenced her methodological approach and global perspective, fostering a strong foundation for research in financial sustainability and corporate governance.

PROFESSIONAL EXPERIENCE

Since February 2024, she has served as an Associate Professor at the University of King Faisal’s Business School. Previously, she held the role of Assistant Professor at the same institution from 2018 to 2024. Her teaching career began at the Faculty of Economic and Management of Mahdia, Sousse University, Tunisia, where she served as Assistant Lecturer and Teaching Assistant. These cumulative experiences demonstrate her dedication to business education and curriculum development in diverse academic environments across North Africa and the Gulf region.

RESEARCH INTEREST

Her primary research interests include corporate governance, ESG (Environmental, Social, and Governance) practices, sustainable finance, earnings management, and behavioral finance. She is particularly focused on how these elements interact in emerging and transitional markets. Her interdisciplinary research investigates the influence of board characteristics, regulatory interventions, and environmental standards on financial sustainability and investor sentiment. These interests align with global efforts to enhance transparency, accountability, and ethical decision-making within corporate structures, particularly in the context of economic uncertainty and environmental challenges.

AWARD AND HONOR

Kaouther Chebbi received recognition for presenting the best doctoral paper at the 2016 Summer Accounting and Finance Conference (SAF16) held in Monastir, Tunisia. The paper was distinguished among doctoral candidates in the country. Additionally, her regular participation in prestigious international conferences in France, Tunisia, and Qatar highlights her academic reputation and commitment to scholarly dialogue. These achievements reflect the academic community's recognition of her research quality and contributions to financial and governance discourse in both developed and emerging market contexts.

RESEARCH SKILL

She demonstrates robust capabilities in econometric analysis, corporate finance modeling, panel data methodologies, and financial forecasting. Her work also applies advanced tools like the DCC-GARCH model to analyze cryptocurrency markets and economic ripple effects. Her research often involves large datasets and complex statistical techniques to extract insights related to ESG practices, stock market behavior, and sustainability indicators. Her ability to blend qualitative and quantitative methodologies strengthens her analytical precision and ensures the practical applicability of her findings.

CONCLUSION

Kaouther Chebbi exemplifies a modern academic whose work intersects finance, sustainability, and policy. Her professional journey reflects academic excellence, impactful research, and global engagement. Through her active participation in high-level conferences and applied research projects for the Saudi Capital Market Authority, she continues to influence corporate governance reform and environmental responsibility. Her innovative work, including patented technological solutions and ESG impact analysis, underscores her commitment to research that contributes to sustainable development and economic resilience in emerging markets.

Qiu Jun – Environmental Engineering – Outstanding Scientist Award

Qiu Jun - Environmental Engineering - Outstanding Scientist Award

Beijing Normal University - China

AUTHOR PROFILE

GOOGLE SCHOLAR
ORCID

SUMMARY

Qiu Jun is a renowned expert in atmospheric water resource technology, microscale fluid-solid interaction mechanics, and engineering design. A consistent contributor to water sciences and hydrology, the research spans multiple domains, including energy-water systems and environmental sustainability. Roles in academia and national laboratories emphasize a dedication to scientific advancement, innovation, and interdisciplinary collaboration. The focus lies in solving practical water and environmental challenges using advanced simulation, modeling, and field experimentation. With a series of high-impact publications and international collaborations, Qiu Jun's contributions are pivotal in bridging aerospace engineering principles with water science to address global resource challenges.

EDUCATION

Education began with a Bachelor of Science degree from the School of Aerospace, Tsinghua University, Beijing. This was followed by a Master’s and Ph.D. from the same institution, deepening expertise in engineering and applied sciences. Further academic enrichment came through a visiting scholar program at Columbia University in the Department of Biomedical Engineering. Postdoctoral research continued at Tsinghua University, focusing on applied hydrology and mechanics. The educational background combines aerospace, hydrology, and biomedical research, equipping Qiu Jun with a unique interdisciplinary foundation ideal for tackling modern challenges in water resource management and environmental engineering.

PROFESSIONAL EXPERIENCE

Professional trajectory includes roles from Postdoctoral Research Fellow to Assistant Professor at Tsinghua University. Later held research fellow positions in the Department of Hydraulic and Hydrology, culminating in appointment as Distinguished Research Fellow at Qinghai University’s State Key Laboratory. Currently serving as Professor at Beijing Normal University's College of Water Sciences. Experience reflects a steady progression through prestigious institutions, emphasizing innovation in water systems, experimental hydrology, and resource optimization. Work includes leadership in major national and institutional research programs, with responsibilities in academic mentorship, experimental platform development, and policy-informing environmental studies.

RESEARCH INTEREST

Core interests include atmospheric water harvesting, gravity energy storage systems, climate-influenced hydrological cycles, reservoir management, and fluid mechanics at the microscale. Research integrates physical experimentation with advanced modeling to enhance water resource reliability and sustainable energy applications. Special attention is given to ecological water demand, fog elimination, and climate-induced precipitation patterns. Studies frequently address the Qinghai-Tibet Plateau, emphasizing regional hydrological behavior and its global implications. Optimization techniques, including particle swarm algorithms, are applied across image processing and water systems. This multidisciplinary approach enables the design of practical and theoretical frameworks to tackle pressing environmental and energy challenges.

AWARD AND HONOR

Recognition stems from significant publications, international collaborations, and national-level appointments. Invitations to contribute as corresponding author on numerous peer-reviewed journals highlight leadership within the field. Notable appointments at Tsinghua University and Beijing Normal University reflect academic and institutional recognition. Participation in interdisciplinary research projects across China and abroad demonstrates trust in scientific competence and leadership. Although formal awards are not listed, distinguished titles and appointments serve as evidence of professional acknowledgment. Positions in leading water science centers and engineering departments reinforce continued contributions to scientific excellence and environmental solutions in academia and applied science.

RESEARCH SKILL

Possesses advanced skills in experimental system design, atmospheric water collection techniques, hydrological modeling, MATLAB GUI programming, image inpainting using PSO algorithms, and climate variability analysis. Well-versed in integrating environmental data with simulation software and optimization tools to enhance decision-making in reservoir and water system management. Additional competencies include acoustic fog elimination, ecological forecasting, and data-driven zoning of precipitation regimes. Research frequently applies computational fluid dynamics, laboratory-scale validation, and long-term environmental monitoring. The integration of engineering methods with climate science underlines a systems-level research skillset suited for applied environmental and hydrological studies.

CONCLUSION

Work exemplifies the fusion of aerospace engineering, environmental science, and water resource management. With strong academic roots and wide-ranging applications, research addresses urgent global challenges such as water scarcity, climate variability, and energy sustainability. Contributions span foundational theory, applied experimentation, and policy-relevant insights. Engagement across major Chinese universities and global institutions underscores influence and reach. From designing fog elimination systems to optimizing reservoir operations, the approach remains comprehensive, forward-thinking, and multidisciplinary. Through high-level appointments, impactful publications, and continuous research, Qiu Jun emerges as a key figure in advancing scientific solutions for sustainable resource management.

Xin (Cissy) Ma – Water Resources Engineering – Best Researcher Award

Xin (Cissy) Ma - Water Resources Engineering - Best Researcher Award

U.S. Environmental Protection Agency - United States

AUTHOR PROFILE

ORCID
SCOPUS

SUMMARY

Xin (Cissy) Ma is a leading environmental engineer at the U.S. Environmental Protection Agency with a strong record in sustainable water systems, life cycle assessment, and resource recovery. With decades of experience in federal research, Ma has played a crucial role in developing tools and strategies to inform urban water reuse, address emerging contaminants, and enhance wastewater treatment. She is widely recognized for her contributions to systems analysis, policy engagement, and interagency collaboration, significantly advancing national efforts toward a net-zero water economy and climate resilience in environmental infrastructure.

PROFESSIONAL EXPERIENCE

Serving as a senior research environmental engineer at the EPA, Xin Ma has progressed through a distinguished federal career. Her work spans technical research, strategic program leadership, and stakeholder engagement. At the EPA's Cincinnati and Athens labs, she has led numerous research initiatives focused on decentralized water reuse, nutrient recovery, and emergy accounting. She has also served as a Contracting Officer’s Representative and Principal Investigator on major projects, advancing sustainability goals across multiple EPA programs. Her extensive involvement in grant reviews, technical writing, and expert panels further reflects a comprehensive and impactful professional journey.

RESEARCH INTEREST

Ma's research focuses on sustainable urban water systems, water reuse, life cycle and cost assessment, and nutrient recovery. Her investigations aim to optimize the environmental and economic performance of water and wastewater treatment technologies. With a multidisciplinary systems approach, she explores how emerging contaminants, climate variability, and circular resource flows impact water infrastructure. A significant emphasis is placed on integrating ecological accounting metrics like emergy into life cycle thinking. Her work supports resilient infrastructure development, particularly in decentralized and fit-for-purpose water reuse strategies, promoting equity, efficiency, and sustainability in environmental decision-making.

AWARD AND HONOR

Xin Ma has received numerous accolades, including the 2025 AWWA ACE Water 2050 MVP for Net Zero Water Economy and multiple U.S. EPA Scientific and Technological Achievement Awards. Her service has been recognized with honors from the White House Office of Science and Technology Policy for contributions to IPCC reviews. A consistent recipient of superior performance awards across various EPA divisions, her recognition spans over a decade. These honors reflect the national and international impact of her technical leadership, scientific excellence, and commitment to environmental innovation and sustainable development.

RESEARCH SKILL

Ma possesses expert-level skills in life cycle assessment, cost-benefit analysis, emergy accounting, and sustainability metrics. Her capabilities include modeling water reuse systems, evaluating environmental tradeoffs, and using integrated decision-support tools. She has led interdisciplinary teams in developing EPA-endorsed software such as the NEWR Calculator and the UEV Library. Her research integrates quantitative and qualitative metrics, blending environmental science, policy, and engineering. With a solid foundation in experimental design, data interpretation, and regulatory alignment, Ma excels in translating complex data into practical solutions for federal policy and sustainable infrastructure planning.

PUBLICATIONS

Title: Environmental Impacts and Cost of a Water Quality Trading Approach for NPDES Nutrient Permit Compliance in a Rural Watershed
Authors: Sam Arden; Ben Morelli; Joe Miller; Sagarika Rath; Jennifer Ferrando; George Azevedo; Smiti Nepal; Bayou Demeke; Xin (Cissy) Ma
Journal: Water Research X, 2025


Title: Onsite Non-potable Reuse for Large Buildings: Environmental and Economic Suitability as a Function of Building Characteristics and Location
Authors: Sam Arden; Ben Morelli; Sarah Cashman; Xin (Cissy) Ma; Michael Jahne; Jay Garland
Journal: Water Research, 2021


Title: Human Health, Economic and Environmental Assessment of Onsite Non-Potable Water Reuse Systems for a Large, Mixed-Use Urban Building
Authors: Sam Arden; Ben Morelli; Mary Schoen; Sarah Cashman; Michael Jahne; Xin (Cissy) Ma; Jay Garland
Journal: Sustainability, 2020


Title: Holistic Analysis of Urban Water Systems in the Greater Cincinnati Region: (1) Life Cycle Assessment and Cost Implications
Authors: Xiaobo Xue; Sarah Cashman; Anthony Gaglione; Janet Mosley; Lori Weiss; Xin Cissy Ma; Jennifer Cashdollar; Jay Garland
Journal: Water Research X, 2019


Title: Holistic Analysis of Urban Water Systems in the Greater Cincinnati Region: (2) Resource Use Profiles by Emergy Accounting Approach
Authors: Sam Arden; Xin (Cissy) Ma; Mark Brown
Journal: Water Research X, 2019

 

CONCLUSION

Through a career grounded in research excellence and public service, Xin Ma exemplifies leadership in sustainable water infrastructure and environmental systems thinking. Her contributions have driven forward national priorities in climate adaptation, water reuse, and resource efficiency. By integrating science, engineering, and policy, she delivers solutions that support resilient communities and ecological health. From tool development to global collaboration on climate reports, her influence spans local, national, and international levels. Xin Ma continues to shape the future of environmental engineering through rigorous analysis, stakeholder engagement, and innovation in sustainability practices.

Zoma Fati – Materials Science and Engineering – Best Researcher Award

Zoma Fati - Materials Science and Engineering - Best Researcher Award

Yembila Abdoulaye TOGUYENI University - Burkina Faso

AUTHOR PROFILE

ORCID

RESEARCH BACKGROUND

Zoma Fati has consistently contributed to civil engineering through a multidisciplinary approach combining physics and sustainable material science. His work focuses on local construction techniques and energy-efficient materials, aligning with environmental and thermal regulation goals. At the Université Yembila Abdoulaye TOGUYENI, he has played a leadership role in fostering engineering education and research, especially in material formulation using geo- and bio-sourced components. His efforts have expanded the understanding of thermally adaptive structures like Nubian vaults, emphasizing cost-effectiveness, ecological sustainability, and performance in extreme climates.

INNOVATIVE MATERIAL DEVELOPMENT

Zoma Fati’s research has led to the development of environmentally friendly materials tailored to local contexts. He has proposed scientifically validated criteria for selecting soil suitable for energy-efficient construction. His work also extends into plastic waste-based concrete innovations, targeting civil applications such as roads, sewage systems, and low-cost buildings. These innovations aim to reduce carbon footprints while leveraging abundant local and recycled resources. Though some findings await publication, his progressive direction reflects a commitment to both technical advancement and ecological responsibility, particularly in under-resourced regions.

SCIENTIFIC CONTRIBUTIONS

Zoma Fati has authored 12 journal articles indexed in SCI and Scopus, reflecting the academic rigor and relevance of his contributions. His presence on platforms like ResearchGate, with an h-index of 4, shows active engagement with the scientific community. He holds editorial appointments and regularly participates in peer collaborations, enabling cross-disciplinary knowledge exchange. He has contributed to technical development in Burkina Faso and broader regions by aligning scientific pursuits with local socioeconomic needs, offering practical applications in construction technology and energy conservation strategies.

COLLABORATION AND LEADERSHIP

An influential figure beyond academia, Zoma Fati serves as a board member at ANEREE and holds key roles in organizations such as ABAPEE and SBSIA. These positions enhance his ability to shape policy and professional practices related to energy efficiency and engineering. His leadership at the Université Yembila Abdoulaye TOGUYENI as Dean and previously Assistant Dean exemplifies his administrative capability and strategic vision. Through these roles, he has built frameworks for sustainable research initiatives and fostered interdisciplinary cooperation among scholars, engineers, and policy-makers.

PUBLICATION

Assessment of the embodied energy and carbon footprint of vibration-compacted adobe brick

Authors: Fati Zoma, Noufou Zongo, Etienne Malbila, David Yemboini Kader Toguyeni

Journal: Journal of Building Engineering

Noudy Sengxeu – Public Health – Best Researcher Award

Noudy Sengxeu - Public Health - Best Researcher Award

faculty of pharmacy - France

AUTHOR PROFILE

ORCID
SCOPUS

SUMMARY

Noudy Sengxeu has undertaken several high-impact research consultancies and coordination roles across global institutions. He has contributed to projects under the World Health Organization, Infectious Diseases Data Observatory, UNICEF, and Asian Development Bank, focusing on public health, drug quality, and gender analysis. His leadership includes coordinating multi-country studies, developing research tools like "Epione", and estimating medicine needs in resource-limited settings. His work spans Laos, Tunisia, Bangladesh, Ghana, Mozambique, and Vietnam. These activities demonstrate his commitment to evidence-based health interventions, particularly in low- and middle-income countries, with an emphasis on public health improvement and medicine accessibility.

PROFESSIONAL EXPERIENCE

Noudy Sengxeu has played significant roles in both academic and international development sectors. His professional journey includes serving as an analytical chemistry teacher, managing multi-sectoral technical programs, and leading health-focused initiatives. He has worked with governmental ministries and global NGOs to integrate gender perspectives into health and agricultural systems, and to ensure laboratory capacities meet safety standards. In each position, he has exhibited strong coordination, policy translation, and implementation skills. His ability to manage interdisciplinary teams and contribute to policy design underlines his valuable cross-sector expertise in public health, quality assurance, and clinical research.

RESEARCH INTEREST

His research interests revolve around access to quality medicines, public health policy, gender analysis, and medicine affordability. Noudy Sengxeu’s work focuses on health equity, especially in under-resourced regions. His publications and field projects indicate a special focus on epilepsy care, antibiotic quality control, and gender inclusion in healthcare services. He is especially interested in combining clinical data with social determinants of health to drive informed decision-making. Through data-centric and community-based approaches, he aims to influence health system strengthening, particularly in Southeast Asia and other developing regions with similar health disparities.

AWARD AND HONOR

Noudy Sengxeu has received recognition from prominent research platforms for his valuable work in neurology and drug safety. He has been an invited peer reviewer for BMC Neurology and presented at prestigious international conferences, including the International Epilepsy Congress and the American Society of Tropical Medicine and Hygiene. These platforms have acknowledged his evidence-driven insights and leadership in improving treatment access for epilepsy and addressing medicine quality. His research continues to earn attention in global forums, enhancing visibility for public health challenges in Southeast Asia and driving collaborative discussions around medicine safety and accessibility.

RESEARCH SKILL

Noudy Sengxeu brings a rich toolkit of research capabilities spanning epidemiology, analytical method development, and statistical analysis. He designs robust research protocols, coordinates multi-country studies, and performs gender-responsive evaluations. His technical expertise includes quality testing using HPLC and TLC, project implementation, and development of monitoring frameworks. He is proficient in data collection tools like KoBoCollect and Castor EDC, and analytical software such as SPSS. These skills enable him to navigate complex field conditions, ensuring the scientific integrity and practical relevance of his findings, especially in public health and pharmaceutical research domains.

PUBLICATION

 

Title: Clinical management and disease-modifying treatment for amyotrophic lateral sclerosis in African hospital centers: the TROPALS study
Authors: Luna, J.; Jost, J.; Diagana, M.; Ait Aissa, L.; Tazir, M.; Ali Pacha, L.; Kacem, I.; Gouider, R.; Henning, F.; Basse, A. et al.
Journal: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration

Title: Availability, affordability, and quality of essential anti-seizure medication in Cambodia
Authors: Sengxeu, N.; Aon, C.; Dufat, H.; Boumediene, F.; Chan, S.; Ros, S.; Preux, P.-M.; Ratsimbazafy, V.; Jost, J.
Journal: Epilepsia Open

Title: Availability, affordability, and quality of essential antiepileptic drugs in Lao PDR
Authors: Sengxeu, N.; Dufat, H.; Boumediene, F.; Vorachit, S.; Chivorakoun, P.; Souvong, V.; Manithip, C.; Preux, P.-M.; Ratsimbazafy, V.; Jost, J.
Journal: Epilepsia Open

Title: Differences in knowledge about epilepsy and antiepileptic drugs among pharmacy-dispensing workers in Cambodia and in Lao PDR
Authors: Sengxeu, N.; Boumediene, F.; Vorachit, S.; Chivorakoun, P.; Souvong, V.; Manithip, C.; Chan, S.; Ros, S.; Chea, K.; Aon, C. et al.
Journal: Epilepsy and Behavior

Title: Knowledge Of Epilepsy And Antiepileptic Drugs Of Supply Chain Workers Dispensing Drugs To Patients In Lao PDR And Cambodia
Authors: Sengxeu, N.; Ratsimbazafy, V.; Preux, P.-M.; Samleng, C.; Chivorakoun, P.; Jost, J.
Journal: Epilepsia

Title: Explanatory factors of adherence to community-based management of epilepsy in Lao PDR
Authors: Bounlu, M.; Auditeau, E.; Vorachit, S.; Chivorakoun, P.; Souvong, V.; Sengxeu, N.; Preux, P.-M.; Boumediene, F.
Journal: Epilepsy and Behavior

CONCLUSION

The research and fieldwork led by Noudy Sengxeu underscore a career devoted to improving health outcomes through innovation, collaboration, and data integrity. His multidisciplinary approach—spanning neurology, pharmacology, gender analysis, and epidemiology—makes him a key contributor to global health dialogues. With substantial experience in project coordination, policy consultation, and academic instruction, his influence extends across research, practice, and education. He consistently demonstrates a passion for health equity, leveraging science to inform practice in complex, multicultural environments. His work continues to pave the way for impactful, evidence-based policy interventions in global health.

Shujie Qin – Timber structures – Best Researcher Award

Shujie Qin - Timber structures - Best Researcher Award

Hainan University - China

AUTHOR PROFILE

SCOPUS
ORCID

SUMMARY

Shujie Qin is a dynamic researcher in Civil Engineering, specializing in timber and composite structures, corrosion behavior of building materials, and structural analysis of heritage constructions. With a strong academic and research foundation rooted in leading Chinese institutions and enhanced by international collaboration, he has significantly contributed to the understanding of deterioration mechanisms and reinforcement strategies for historical structures. His analytical approaches and experimental investigations reflect a solid blend of theoretical depth and practical relevance, particularly in safeguarding architectural heritage through innovative engineering solutions.

EDUCATION

Shujie Qin completed his undergraduate and doctoral studies in Civil Engineering at Beijing Jiaotong University, where he was mentored by Prof. Yang Na. During his doctoral research, he enriched his academic perspective as a visiting scholar at Western Sydney University under Prof. Xinqun Zhu. This international exposure broadened his expertise in structural performance evaluation and corrosion analysis. His educational journey has been marked by rigorous training in both experimental and analytical methodologies essential for studying traditional and modern civil engineering systems.

PROFESSIONAL EXPERIENCE

Shujie Qin has gained hands-on experience through national and regional research projects focused on structural integrity and restoration. He has led and participated in programs funded by the National Natural Science Foundation of China and Hainan Provincial foundations, addressing complex issues in heritage timber frameworks and atmospheric corrosion. His work spans structural diagnostics, material degradation studies, and load-carrying capacity analysis. His research supports the preservation of historical architecture while contributing to the durability and sustainability of future constructions.

RESEARCH INTEREST

His primary research interests include the structural performance and restoration of ancient timber buildings, corrosion and deterioration of construction materials in harsh climates, and timber-steel composite behavior. Shujie Qin focuses on evaluating and enhancing the mechanical properties of historical timber joints, especially under damaged conditions. He is also interested in developing time-dependent deterioration models for steel in tropical environments. His research aims to bridge the gap between modern engineering practices and the conservation of cultural heritage through structural innovation.

AWARD AND HONOR

Shujie Qin has received competitive funding under prestigious schemes like the National Natural Science Foundation of China for Young Scholars and the Hainan Provincial High-Level Talents Program. These recognitions affirm the relevance and scientific merit of his research in structural engineering and material durability. His selection for leadership roles in national and institutional research initiatives reflects his growing reputation as a promising young scholar in the field of civil and structural engineering, particularly in historical conservation and sustainable infrastructure development.

RESEARCH SKILL

Shujie Qin is proficient in structural analysis, experimental mechanics, corrosion modeling, and dynamic simulation. He is skilled in using analytical tools for evaluating structural degradation and designing reinforcement strategies for heritage buildings. His technical expertise includes load-carrying capacity assessment, time-dependent deterioration modeling, and dynamic performance analysis of beam-column joints. He has hands-on experience in field investigations, laboratory simulations, and developing predictive models based on empirical data—especially within the context of timber structure behavior and environmental impact.

PUBLICATIONS

 

Title: Experimental investigation and evaluation of metal-plate-connected laminated bamboo lumber joints
Authors: T.Y. Li, J.Q. Chen, P.C. Qin, Y. Xiao, B. Shan, Y.F. Yang, S.J. Qin, X.L. Fu
Journal: Construction and Building Materials


Title: Mechanical behavior of glued-in GFRP rod in glubam: Experimental and analytical study
Authors: T.Y. Li, J.Q. Chen, Y. Xiao, J. Zhang, B. Shan, S.Q. Dai, S.J. Qin, B. Huang
Journal: Construction and Building Materials


Title: Bending performance of nail-laminated bamboo-timber panels made with glubam and fast-grown plantation Chinese fir
Authors: T.Y. Li, J.Y. Deng, J.Q. Chen, Y. Xiao, B. Shan, H. Xu, S.J. Qin, Q. Yu
Journal: Construction and Building Materials


Title: Experimental research on standardized bamboo culm components for developing prefabricated bamboo building
Authors: Bo Shan, Ji Qiu, Hao Xu, Tianyu Li, Yan Xiao, Shujie Qin, Li Gao, Zhi Li
Journal: Structures


Title: Rotational Behavior of Column Footing Joint and Its Effect on the Dynamic Characteristics of Traditional Chinese Timber Structure
Authors: Shujie Qin, Na Yang, Lu Dai, Sergio De Rosa
Journal: Shock and Vibration

CONCLUSION

Through an integrated approach to historical preservation and material performance analysis, Shujie Qin is redefining the role of civil engineering in cultural heritage protection. His research not only enhances structural safety but also supports sustainability by prolonging the service life of ancient and modern materials. With a strong track record in competitive research, academic publication, and interdisciplinary collaboration, he continues to impact the fields of timber structure analysis and corrosion engineering. His work stands at the intersection of tradition, science, and engineering advancement.

Rahma Permata – Construction Management – Best Researcher Award

Rahma Permata - Construction Management - Best Researcher Award

National Taiwan University - Taiwan

AUTHOR PROFILE

ORCID

SUMMARY

Rahma Permata is a doctoral researcher in Civil Engineering at National Taiwan University, with a strong foundation in structural engineering and project management. She has academic and practical experience in seismic evaluation, steel connections, and construction site inspection. With a career spanning international education and corporate roles, Rahma integrates technical acumen with cross-cultural communication. Her previous work as a civil engineer and management trainee enriched her interdisciplinary skills across design, supply chain, and scheduling systems. Passionate about engineering development, she is recognized for her ability to manage complex workflows and contribute to innovative, data-driven construction solutions.

EDUCATION

Rahma Permata earned her master’s degree from National Cheng Kung University, Taiwan, where she focused on structural seismic performance in steel beam-column joints. She is currently pursuing a Ph.D. in Civil Engineering at National Taiwan University, under guidance from experts in structural analysis and construction engineering. Her academic training combines theoretical design, computational modeling, and field applications. Her early studies in Indonesia laid the groundwork for her technical and professional excellence. Across her education, Rahma has focused on structural safety, modeling accuracy, and the dynamic behavior of building systems during seismic events.

PROFESSIONAL EXPERIENCE

Rahma has diverse work experience ranging from international internships to engineering roles in private companies. At Continental Engineering Corporation, she contributed to project scheduling using Primavera P6 and collaborated on technical drawings with AutoCAD. She previously worked at PT Luxindo Raya in various departments including sales, water systems, marketing, and supply chain. Her role spanned communication with stakeholders, quality assurance, and project coordination. She also interned at the Palembang Education Authority, recalculating structural components using SAP2000. Her experience demonstrates versatility in engineering functions, team collaboration, and integration of technical and managerial responsibilities in large-scale infrastructure projects.

RESEARCH INTEREST

Rahma’s research focuses on the seismic behavior and structural integrity of civil engineering systems. She explores how detailed modeling and strength variability affect the seismic performance of steel joints in buildings. Her interests extend to computer-aided structural analysis using tools like SAP2000, ETABS, and ANSYS. Her doctoral work aims to improve the resilience and safety of buildings in seismic zones by refining modeling accuracy and evaluating structural failure mechanisms. With a commitment to sustainable and disaster-resistant construction, Rahma continues to investigate the integration of design precision and real-world performance in structural engineering practice.

AWARD AND HONOR

Rahma has gained recognition for her dedication and achievements through her selection as a research assistant and academic collaborator at top Taiwanese institutions. Her appointment under professors at National Cheng Kung University and National Taiwan University highlights her academic potential. She held a key role as secretary of the Muslim Students Association at NCKU, reflecting her leadership and organizational engagement beyond academia. While formal awards are not explicitly listed, Rahma’s growing responsibilities and consistent involvement in both research and community initiatives illustrate the respect and trust she has earned within academic and professional circles.

RESEARCH SKILL

Rahma is proficient in structural analysis software including SAP2000, ETABS, ANSYS, and AutoCAD. She also has experience using Primavera P6 for construction scheduling and Microsoft tools for data reporting. Her expertise includes interpreting seismic data, preparing as-built drawings, conducting field inspections, and optimizing structural models. Her analytical capabilities allow her to evaluate the performance of engineering systems under dynamic conditions. With a blend of hands-on site knowledge and computational modeling, Rahma brings a balanced approach to solving engineering problems. She is also skilled in technical communication and managing engineering documentation within multidisciplinary teams.

CONCLUSION

Rahma Permata represents the new generation of civil engineers with a global outlook, advanced technical training, and a passion for solving real-world problems through engineering innovation. Her experience spans field operations, academic research, and international collaboration. She brings a multidisciplinary and systems-based approach to structural design, combining theoretical rigor with practical implementation. Rahma’s dedication to continuous learning and improvement makes her a valuable contributor to both academic research and industry projects. With strong analytical tools, leadership experience, and a focus on seismic safety, she continues to shape the field of sustainable and safe civil infrastructure.

PUBLICATIONS

Title: Life Cycle Assessment of Integrated Energy and Seismic Retrofits for Existing Buildings
Authors: [Author information not provided in the available sources.]
Journal: Journal of Building Engineering

Title: Integrated Retrofitting Strategies for Aging Buildings: Bridging Seismic Risk Mitigation and Sustainability
Authors: Rahma Permata and Szu-Yun Lin
Journal: EGU General Assembly 2025 (Preprint)

Khaled Abdel Aziz Eltawil – Sustainable Construction Materials – Best Researcher Award

Khaled Abdel Aziz Eltawil - Sustainable Construction Materials - Best Researcher Award

Higher Institute for Engineering and Technology at Elmanzala - Egypt

AUTHOR PROFILE

ORCID

SUMMARY

Dr. Khaled Abdel Aziz Eltawil is an accomplished Assistant Professor in Structural Engineering with a strong academic and research background. He is currently serving at ElManzala Higher Institute of Engineering and Technology and is a Postdoctoral Research Associate at Mansoura University. With notable experience in experimental and eco-friendly materials, his work bridges academia and practical application in the construction industry. Dr. Eltawil is recognized for his expertise in high-performance concrete, sustainable engineering solutions, and structural innovations. He actively contributes to academic development, student mentoring, and research leadership, reflecting his holistic commitment to engineering excellence.

EDUCATION

Dr. Eltawil earned his Ph.D. in Structural Engineering from Mansoura University in 2022, where his thesis focused on using black sand to produce heavyweight high-performance concrete for radiation shielding. He obtained his Master’s in 2017, researching sustainable supplementary cementitious materials for green concrete. His educational foundation was laid with a Bachelor’s degree in Civil Engineering in 2014, also from Mansoura University. Throughout his academic journey, he has built a robust foundation in structural materials, sustainability, and innovative construction technologies, which continues to underpin his research and teaching responsibilities today.

PROFESSIONAL EXPERIENCE

Dr. Eltawil holds extensive teaching and research roles. He is currently an Assistant Professor at ElManzala Higher Institute and a Postdoctoral Researcher at Mansoura University. He has previously worked at New Damietta Institute and Mansoura University as a teaching assistant and lecturer. His courses span concrete design, special materials, soil mechanics, and hydraulic engineering. Additionally, he has contributed to engineering projects, including infrastructure development and water treatment systems. His leadership roles include vice director of quality assurance, academic coordinator, and head of various academic and research committees, showcasing his administrative and instructional capabilities.

RESEARCH INTEREST

His research interests include advanced cementitious materials, black sand applications, magnetized water use, green concrete, and engineered composites. He focuses on producing sustainable and radiation-shielding concretes using industrial waste and novel materials. Dr. Eltawil explores the performance enhancement of cementitious systems using nanotechnology, recycled components, and advanced hydration mechanisms. His work reflects a strong commitment to environmental sustainability and practical innovations in structural materials, making significant contributions to high-performance infrastructure. His interdisciplinary focus also involves collaborations in lightweight construction and eco-friendly urban development materials, aligning with global sustainable engineering goals.

AWARD AND HONOR

Dr. Eltawil has received numerous recognitions for his academic and research achievements. He was invited as a reviewer for Q1 journals like Construction and Building Materials and Scientific Reports, acknowledging his authority in the field. He also holds a patent for the use of black sand in concrete, supported by the Egyptian Academy of Scientific Research. His research has been recognized in national projects affiliated with the Egyptian Ministry of Defense and the Housing and Building Research Center. His accolades reflect his excellence in engineering research, innovation, and academic contribution at national and international levels.

RESEARCH SKILL

Dr. Eltawil brings extensive skills in structural analysis software including AutoCAD, SAP2000, ETABS, SAFE, and Primavera P6. He also applies programming tools like MATLAB and Python for modeling and data analysis, particularly in artificial intelligence and neural networks. He is adept at designing experimental setups, analyzing material properties, and interpreting advanced statistical outputs. His involvement in multidisciplinary projects has also enhanced his skills in quality assurance, strategic planning, and academic accreditation. He effectively combines computational modeling with real-world experimentation to develop novel materials and optimize structural designs for practical and sustainable applications.

CONCLUSION

Dr. Khaled Eltawil exemplifies a dynamic and impactful career in structural engineering, merging theoretical innovation with real-world application. His academic leadership, publication record, technical skills, and involvement in national-level projects underscore his status as a leading expert in sustainable construction materials. With ongoing research in high-performance composites and radiation shielding concretes, he continues to address global engineering challenges. His role in education, quality assurance, and scientific committees also highlights his dedication to institutional advancement. As a scientist and educator, Dr. Eltawil remains a valuable contributor to the evolution of structural and environmental engineering.