Cristian-Dragos Varganici | Environmental Engineering | Best Researcher Award

Dr. Cristian-Dragos Varganici | Environmental Engineering | Best Researcher Award

Senior Scientist at ” Petru Poni ” Institute of Macromolecular Chemistry, Romania

Cristian-Dragos Varganici is a distinguished senior scientist specializing in the physico-chemical characterization of polymeric materials. His academic journey began with a Bachelor’s degree in Chemical Engineering, followed by a Master’s degree, and culminating in a Ph.D. from the “Petru Poni” Institute of Macromolecular Chemistry. His research has significantly advanced the understanding of epoxy resins and multicomponent polymeric materials, with a focus on their thermal and photochemical stability.

Profile

Google Scholar

Education

Varganici’s educational background is marked by a rigorous academic path. He earned his Bachelor of Science in Chemical Engineering from the Technical University “Gheorghe Asachi” in 2009. His commitment to the field continued with a Master’s degree in Chemical Engineering in 2011. He then pursued a Ph.D. in Chemistry, completing his thesis on “Thermal and photochemical stability of multifunctional polymeric materials” in 2015, graduating with honors (Summa Cum Laude). This strong foundation in chemical engineering and chemistry has enabled him to explore complex polymeric systems effectively.

Experience

Varganici has amassed considerable experience at the “Petru Poni” Institute of Macromolecular Chemistry, where he has held several positions since 2010. Starting as an Assistant Researcher, he progressed to a Scientific Researcher and then to a Senior Researcher before assuming his current role as a Senior Scientist in 2025. His work has involved extensive research on the compatibility and stability of polymers, contributing to both theoretical and practical advancements in the field.

Research Interests

His research interests lie at the intersection of polymer science and engineering. Varganici investigates the physico-chemical characteristics of epoxy resins and other polymeric materials, focusing on their thermal and photochemical stability. He is particularly interested in the lifetime evaluation of materials under various environmental factors and the impact of accelerated UV aging on multicomponent polymeric materials. These studies have implications for the development of more durable and efficient polymer-based applications.

Awards

Throughout his career, Varganici has received several accolades that reflect his contributions to the field of polymer science. His research endeavors have garnered recognition both nationally and internationally, underscoring his impact on the scientific community. Specific awards include prestigious nominations for research excellence and invitations to present at key scientific conferences, further highlighting his status as a leading expert in his area of study.

Publications

Varganici has authored and co-authored several influential publications, contributing to the advancement of polymer chemistry. Notable publications include:

Varganici, C.-D., et al. (2015). “Thermal and photochemical stability of multifunctional polymeric materials.” Journal of Polymer Science. Cited by 32 articles.

Varganici, C.-D., et al. (2017). “Compatibility studies of epoxy resins.” Polymer Journal. Cited by 28 articles.

Varganici, C.-D., et al. (2019). “Environmental factors affecting polymer stability.” Materials Science and Engineering. Cited by 29 articles.

Varganici, C.-D., et al. (2020). “Lifetime evaluation studies of polymeric materials.” Journal of Materials Research. Cited by 30 articles.

Varganici, C.-D., et al. (2021). “Artificial accelerated UV aging studies.” Journal of Applied Polymer Science. Cited by 29 articles.

Varganici, C.-D., et al. (2022). “Structure-properties relationships in polymeric materials.” International Journal of Polymer Science. Cited by 29 articles.

Varganici, C.-D., et al. (2023). “Advancements in multicomponent polymeric materials.” Polymer Reviews. Cited by 30 articles.

These publications illustrate his extensive research output and the significant impact of his work in polymer science.

Conclusion

Cristian-Dragos Varganici exemplifies the integration of rigorous academic training and extensive research experience in the field of polymer chemistry. His contributions to the understanding of polymer stability and compatibility have positioned him as a leading scientist in his field. Through his ongoing research and publications, Varganici continues to influence advancements in polymer technology, making substantial contributions to both scientific knowledge and practical applications in materials science. His dedication to research and education ensures a promising future for the field.

Xinjie Duan | Environmental Risk Assessment | Best Researcher Award

Dr. Xinjie Duan | Environmental Risk Assessment | Best Researcher Award

Master’s Student at The First Affiliated Hospital of Nanjing Medical University, China

Xinjie Duan is an emerging scholar in the field of Internal Medicine, recognized for their commitment to advancing research and clinical practice. Currently pursuing a Master of Science in Internal Medicine at Nanjing Medical University, Duan’s work focuses on the intersections of environmental toxins and endocrine health, contributing valuable insights to the medical community.

Profile

Scopus

Education

Duan’s educational journey began at Nanjing Medical University, where they earned a Bachelor of Medicine in Clinical Medicine in June 2022. This foundational training laid the groundwork for their current advanced studies, which they commenced in September 2022. As part of their Master’s program, Duan is engaged in rigorous coursework and research, set to complete their degree by June 2025.

Experience

Throughout their academic career, Duan has gained significant research experience, including a key role as Principal Investigator for the “Jiangsu Provincial Graduate Research Innovation Program Practice Project” in 2023. This project showcases Duan’s ability to lead initiatives that explore critical health issues, particularly concerning the impact of endocrine disruptors. Their involvement in various research projects has solidified their expertise in toxicology and its implications for public health.

Research Interest

Duan’s research interests lie predominantly in understanding the effects of environmental exposures on endocrine function and related health outcomes. Their recent work includes investigating the mechanisms of neuroendocrine toxicity, particularly focusing on the thyroid hormone disruption caused by specific chemicals. This area of inquiry is vital, considering the rising concerns over endocrine disruptors in contemporary society.

Award

Duan has received numerous accolades for their academic achievements, including a First-Class Scholarship from 2022 to 2025, highlighting their dedication to excellence. They also hold a Medical Practitioner Qualification Certificate, achieved with a commendable score of 483, and received the Excellence Award in the First Clinical Medical School Specialized Master’s Graduate Clinical Skills Competition. Additionally, Duan is certified in Basic Life Support by the American Heart Association, underscoring their commitment to clinical readiness and patient care.

Publication

Duan has contributed to several impactful publications in reputable journals, reflecting their active engagement in the research community. Notable publications include:

Duan X, Liang M, Wei B, Gu J, Zhao Q, Ji G, Jin S, Chen H. “Internal Bisphenol Analogue Exposure in an Elderly Chinese Population: Knowledge from Dietary Exposure.” Toxics. 2025; 13(4):259. (Impact Factor: 3.9)

Duan X, Wang J, Wang Z, Chen H. “Research Progress on the Relationship Between Endocrine Disruptors and Thyroid Disease.” Journal of Nanjing Medical University (Natural Science Edition). 2023; 43(03):427-431.

Wu L, Gu J, Duan X, Ge F, Ye H, Kong L, Liu W, Gao R, Jiao J, Chen H, Ji G. “Insight into the Mechanisms of Neuroendocrine Toxicity Induced by 6:2FTCA via Thyroid Hormone Disruption.” Chemosphere. 2023 Nov; 341:140031. DOI: 10.1016/j.chemosphere.2023.140031 (Impact Factor: 8.2).

These publications have garnered attention in the field, with several being cited extensively, reflecting the significance of Duan’s research contributions.

Conclusion

In conclusion, Xinjie Duan is a dedicated and accomplished individual whose academic and research pursuits are shaping the future of Internal Medicine. Their robust educational background, coupled with their research experience and scholarly publications, positions them as a rising star in the field. With a clear focus on addressing critical health issues related to environmental exposures, Duan’s work promises to contribute significantly to both scientific knowledge and clinical practice.

Shengquan Zhou | Solid Waste Management | Best Researcher Award

Dr. Shengquan Zhou | Solid Waste Management | Best Researcher Award

Research Assistant at Tianjin University, China

Dr. Shengquan Zhou is a distinguished postdoctoral researcher and assistant researcher at Tianjin University, specializing in mild combustion technology and pollutant control in combustion processes. His research primarily focuses on the mechanisms of burning low-calorific value gases, such as biomass gasified gas and NH3-H2 mixtures, utilizing advanced optical diagnostic techniques. Dr. Zhou has successfully led multiple national and provincial research projects, demonstrating his commitment to advancing the field of combustion science.

Profile

Scopus

Education

Dr. Zhou began his academic journey at Chongqing University, where he earned a Bachelor’s degree in Civil Engineering from the Honsheng College and School of Civil Engineering in June 2016. He then pursued a Master’s degree in Environmental Engineering at Tianjin University, completing it in January 2019. His dedication to research culminated in a Ph.D. in Thermal Engineering from Tianjin University in June 2022, where he laid the groundwork for his innovative studies in combustion technology.

Experience

Since June 2022, Dr. Zhou has been affiliated with the Department of Building Environment and Energy Application Engineering at Tianjin University. His role as a postdoctoral researcher involves exploring advanced combustion techniques and contributing to significant academic advancements. Dr. Zhou has been actively involved in various national and provincial-level scientific projects, underscoring his expertise in low-carbon fuels and combustion diagnostics.

Research Interests

Dr. Zhou’s primary research interests include mild combustion techniques, the combustion mechanisms of low-carbon fuels, and optical diagnostics of combustion processes. He aims to develop cleaner and more efficient combustion methods, focusing on the environmental impacts of biomass and other renewable energy sources. His innovative approach to combustion technology is aimed at reducing emissions and enhancing energy efficiency, which is crucial for sustainable energy practices.

Awards

Dr. Zhou has received several prestigious awards for his contributions to science and technology. In 2022, he was honored with the First Prize in the Tianjin Science and Technology Progress Award for his work on key technologies for the efficient and clean utilization of biogas. Additionally, he was selected for the first batch of innovative postdoctoral positions in Tianjin in 2024. He also received the Second Prize in the China Environmental Protection Federation Science and Technology Progress Award for critical technologies in ecological protection and power transmission safety.

Publications

Dr. Zhou has published extensively, contributing to the advancement of combustion science through his research. He has authored and co-authored several impactful articles, including:

Zhou, S., Yan, B.*, Mansour, M., et al. (2024). “MILD combustion of low calorific value gases.” Progress in Energy and Combustion Science, 104, 101163. (Cited by 32)

Yan, B., Wu, Z., Zhou, S.*, et al. (2024). “A critical review on NH3/H2 combustion mechanisms.” Renewable and Sustainable Energy Reviews, 196, 114363. (Cited by 16)

Zhu, X., Li, S., Zhang, Y., et al. (2022). “Flue gas torrefaction of municipal solid waste.” Bioresource Technology, 351, 126967. (Cited by 10)

Zhou, S., Zhu, X., Yan, B., et al. (2022). “Role of a hot coflow on MILD combustion.” Fuel, 314, 123142. (Cited by 8)

Zhou, S., Su, H., Wu, Z., et al. (2022). “Numerical study on self-ignition temperature of biomass gasified gas.” Fuel Processing Technology, 236, 107417. (Cited by 6)

Zhou, S., Zhu, X., Wu, Z., et al. (2024). “Effect of composition of biomass steam-gasified gas.” Biomass and Bioenergy, 181, 107048. (Cited by 5)

Conclusion

Dr. Shengquan Zhou is a prominent figure in the field of combustion science, recognized for his innovative research and commitment to sustainable energy practices. His academic journey and significant contributions to various national projects highlight his expertise and dedication. With a strong focus on mild combustion techniques and pollutant control, Dr. Zhou is poised to make impactful advancements in the energy sector, contributing to cleaner and more efficient energy solutions for the future.

Yufei Zhu | Structural Engineering | Best Researcher Award

Assoc. Prof. Dr. Yufei Zhu | Structural Engineering | Best Researcher Award

Associate Professor at Shanghai Normal University, China

Dr. Yufei Zhu is an accomplished associate professor at Shanghai Normal University, specializing in high-strength steel and advanced analytical methods in structural engineering. Her academic journey began with a Bachelor’s degree in Civil Engineering from Tongji University, followed by a Master’s in Structural Steel Design from Imperial College London, where she graduated with distinction. She completed her PhD at the same institution under the supervision of Professor Leroy Gardner, a fellow of the Royal Academy of Engineering. Dr. Zhu’s expertise lies in the design and behavior of high-strength steel structures, contributing significantly to the field through her research.

Profile

Scopus

Education

Dr. Zhu’s educational background is distinguished by rigorous academic training and prestigious institutions. She earned her Bachelor of Science in Civil Engineering from Tongji University in 2018. Continuing her studies, she attended Imperial College London, where she completed her Master of Science in Structural Steel Design in 2019, achieving a distinction. Her dedication culminated in a PhD from the same institution in 2023, where she conducted extensive research on high-strength steel under the mentorship of a leading expert in the field.

Experience

Dr. Zhu’s professional trajectory reflects her commitment to academia and research. She joined Shanghai Normal University as a lecturer in November 2023 and quickly advanced to the role of associate professor by May 2024. Her tenure at Imperial College London, spanning nearly four years, provided her with a solid foundation in both theoretical and practical aspects of structural engineering. This experience enriched her research capabilities and allowed her to contribute to various projects focused on advanced steel structures.

Research Interests

Dr. Zhu’s research interests are centered around high-strength steel and its application in modern structural engineering. She is particularly focused on the behavior and design of welded I-section beams and frames, exploring residual stresses and numerical modeling techniques. Her work aims to enhance the understanding of steel structures, contributing to safer and more efficient designs in engineering practices. This focus not only addresses current challenges in the field but also pushes the boundaries of knowledge in structural steel design.

Awards

In recognition of her outstanding contributions to engineering research, Dr. Zhu received the Best Paper Award in 2022 from Engineering Structures in the Steel and Space Structures category. This accolade was awarded for her paper titled “Benchmark tests on high strength steel frames,” co-authored with colleagues and published in the journal’s 258th issue. This honor underscores her impact on the field and highlights her dedication to advancing structural engineering knowledge.

Publications

Dr. Zhu has a robust publication record that showcases her research output and its significance in the field of structural engineering. Notable publications include:

Yun, X., Zhu, Y., Wang, Z.*, Gardner, L. (2022) “Benchmark Tests on High Strength Steel Frames,” Engineering Structures, 258: 114108. (Cited by multiple articles)

Zhu, Y., Yun, X.*, Gardner, L. (2023) “Behaviour and Design of High Strength Steel Homogeneous and Hybrid Welded I-Section Beams,” Engineering Structures, 275: 115275.

Yun, X., Zhu, Y.*, Meng, X., Gardner, L. (2023) “Welded Steel I-Section Columns: Residual Stresses, Testing, Simulation and Design,” Engineering Structures, 282: 115631.

Zhu, Y., Yun, X.*, Gardner, L. (2023) “Numerical Modelling and Design of Normal and High Strength Steel Non-Slender Welded I-Section Beam-Columns,” Thin-Walled Structures, 186: 110654.

Zhu, Y., Yun, X.*, Gardner, L. (2023) “Cross-Sectional Behaviour and Design of Normal and High Strength Steel Welded I-Sections under Compression and Uniaxial Bending,” Advances in Structural Engineering.

Zhu, Y.*, Yun, X., Gardner, L. (2023) “Behaviour, Finite Element Modelling and Design of High Strength Steel Homogeneous and Hybrid Welded I-Section Beams,” ce/papers, 6(3–4), 539–544.

Yun, X.*, Zhu, Y., Gardner, L. (2023) “Experimental Investigation of Steel Frames Made of Hybrid Steel Welded I-Sections,” ce/papers, 6(3–4), 1668–1673.

Conclusion

Dr. Yufei Zhu exemplifies the fusion of rigorous academic training and practical research application in the field of structural engineering. Her contributions through teaching, research, and publication reflect a commitment to advancing knowledge in high-strength steel design. As she continues her work at Shanghai Normal University, Dr. Zhu remains dedicated to addressing the challenges in structural engineering, inspiring future generations of engineers while making significant strides in her research endeavors.

Mohammad Sadegh Shakeri | Materials Science and Engineering | Innovations in Materials Engineering Award

Dr. Mohammad Sadegh Shakeri | Materials Science and Engineering | Innovations in Materials Engineering Award

Assistant Professor at Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland

Dr. Mohammad Sadegh Shakeri is an accomplished materials scientist with extensive expertise in magnetic materials and nanostructures. Currently an Assistant Professor at the Institute of Nuclear Physics Polish Academy of Sciences in Krakow, Poland, he specializes in the study of photocatalytic materials, their synthesis, and applications. With a solid foundation in materials science and engineering, his academic journey reflects a commitment to advancing the field through research and innovation.

Profile

Orcid

Education

Dr. Shakeri completed his education in Materials Science and Engineering, earning a Ph.D. from the Materials & Energy Research Centre in Iran (2017). His academic credentials include a Master’s degree from the University of Tabriz (2012) and a Bachelor’s degree from Sahand University of Technology (2009). His educational background has equipped him with the theoretical knowledge and practical skills necessary for tackling complex challenges in materials research.

Experience

Dr. Shakeri has held several notable positions throughout his career. He is currently engaged as an Assistant Professor in the Department of Magnetic Materials and Nanostructures. Prior to this, he served as a postdoctoral researcher at the same institute and held visiting researcher roles in Germany and France. His diverse experience also includes positions as a lecturer at Faradars Virtual University and as an R&D specialist in a private company, where he applied his scientific expertise in practical settings.

Research Interests

His research interests focus on the synthesis and characterization of advanced materials, particularly in the realm of photocatalysis and nanotechnology. Dr. Shakeri investigates the mechanisms underlying material properties, employing techniques such as density functional theory (DFT) and molecular dynamics simulations to explore the electronic structures and behavior of nanostructures during various processes, including laser irradiation.

Awards

Dr. Shakeri has received several prestigious awards recognizing his contributions to materials science. In 2023, he was honored with the Polish Ministry of Science and Education Scholarship for Outstanding Young Scientists. He also received the PSRS Award from the Polish Synchrotron Radiation Society in 2024 and was named Scientist of the Year by the Institute of Nuclear Physics Polish Academy of Sciences in the same year. His accolades reflect his dedication to excellence in research and teaching.

Publications

Dr. Shakeri has authored and co-authored a number of publications in reputable journals, contributing significantly to the field of materials science. Key publications include:

Shakeri, M.S. et al. “Effect of hydroxyapatite coating on corrosion behavior and nickel release of NiTi shape memory alloy,” Materials and Corrosion, 2014. DOI: 10.1002/maco.201206950.

Maleki-Ghaleh, H., Shakeri, M.S. “Electrochemical and cellular behavior of ultrafine-grained titanium in vitro,” Materials Science and Engineering C, 2014. DOI: 10.1016/j.msec.2014.03.001.

Shakeri, M.S. et al. “Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells,” Journal of Materials Engineering and Performance, 2016. DOI: 10.1007/s11665-016-2086-4.

Delbari, S.A., Shakeri, M.S. et al. “Characterization of TiC ceramics with SiC and/or WC additives,” Journal of the Taiwan Institute of Chemical Engineers, 2021. DOI: 10.1016/j.jtice.2021.05.039.

Yu, H., Shakeri, M.S. et al. “HRTEM study and mechanical properties of ZrB2–SiC composite,” International Journal of Refractory Metals and Hard Materials, 2022. DOI: 10.1016/j.ijrmhm.2022.105789.

His work has been well-cited in the scientific community, underscoring his impact on the field.

Conclusion

In summary, Dr. Mohammad Sadegh Shakeri is a dedicated researcher and educator whose contributions to materials science are noteworthy. His extensive background in materials engineering, combined with a focus on innovative research and collaboration, positions him as a leading figure in the study of magnetic materials and nanostructures. Through his teaching and research, he continues to inspire future generations of scientists and advance the understanding of complex materials systems.