Junsong Yang – Materials Science and Engineering – Best Researcher Award

Junsong Yang - Materials Science and Engineering - Best Researcher Award

Professor | Bengbu Medical University | China

Junsong Yang, affiliated with Bengbu Medical University in China, has established a solid research footprint with contributions that span advanced materials, nanotechnology, and photocatalysis. The profile records 22 publications that collectively garnered 66 citations, reflecting recognition from the scientific community and an h-index of 5, demonstrating both productivity and impact. The works highlight innovative approaches in material design, such as the preparation of Ti₃C₂/SA-TCPP composites through π–π interactions, which significantly improved hydrogen peroxide production and enabled efficient photocatalytic self-Fenton degradation of pollutants like 2,4-dichlorophenol, underscoring the environmental relevance of this research. Another notable study developed ratiometric FRET-encoded Zr-MOF@Au-FAM/TAMRA nanoassemblies integrated with tetrahedral framework nucleic acid-functionalized magnetic beads and DNA walkers, advancing ultrasensitive detection methods for antibiotics such as enrofloxacin and ciprofloxacin, indicating a strong interdisciplinary connection between chemistry, biotechnology, and environmental safety. The author’s research trajectory shows a consistent focus on combining functional nanomaterials with catalytic and sensing applications, addressing both energy conversion and pollution remediation challenges. Co-authorship with 55 collaborators reveals an extensive professional network, enhancing the interdisciplinary scope of the research. The publication record in high-impact journals, including Separation and Purification Technology and Chemical Engineering Journal, illustrates the quality and relevance of contributions in both applied and fundamental science. The consistent engagement with pressing global issues such as environmental pollution, sustainable chemical processes, and biomedical detection technologies positions the work as impactful and forward-looking. While awarded grants are not listed, the productivity and growing citation base suggest increasing recognition and potential for future funded projects. The scholarly activities demonstrate a balance between methodological innovation and practical application, making Junsong Yang’s contributions valuable for advancing modern chemical engineering and materials science, with clear implications for environmental sustainability, energy solutions, and public health monitoring.

Profile: Scopus 
Featured Publications:

Preparation of Ti3C2/SA-TCPP via π–π interaction for the enhanced production of H2O2 and the highly efficient photocatalytic-self-Fenton degradation of 2,4-dichlorophenol. (2025). Separation and Purification Technology.

Ratiometric FRET encoding Zr-MOF@Au-FAM/TAMRA nano assemblies based on tetrahedral framework nucleic acid-functionalized magnetic beads and DNA walker for ultrasensitive quantifying enrofloxacin and ciprofloxacin. (2025). Chemical Engineering Journal.

Elias Wakshume – Industrial Design Engineering – Best Researcher Award

Mr. Elias Wakshume | Industrial Design Engineering | Best Researcher Award

Lecturer | Ethiopian Defence University | Ethiopia

Mr. Elias Wakshume has established a strong research profile in the field of mechanical and industrial design, with particular emphasis on advanced composites, structural mechanics, and finite element simulations. His work focuses on applying engineering science to develop innovative protective solutions such as fibre-reinforced composites for ballistic body armour, addressing critical needs in defence and civil safety applications. Through peer-reviewed publications in high-impact journals, including Applications in Engineering Science and the Journal of Defence Technologies, Elias has contributed valuable insights into material optimization, lightweight structures, and safety engineering. His research integrates sustainability principles with structural optimization, ensuring that protective materials meet performance requirements while minimizing environmental impact. By leveraging tools like ANSYS, SolidWorks, MATLAB, and AutoCAD, he advances simulations that validate theoretical models and guide practical implementations in real-world contexts. His expertise extends to fatigue, thermal, and structural analysis, enabling comprehensive evaluations of composite materials under complex loading conditions. Elias has also gained recognition through paper acceptance at significant conferences such as the 3rd National Research Conference on Emerging Innovation of Science and Technology for Enhancing Defence Force Capabilities, highlighting his role in advancing engineering solutions with direct national and global relevance. His professional engagements with research communities demonstrate a commitment to collaboration and knowledge sharing, reinforcing the application of mechanical design and industrial engineering to contemporary challenges in defence and environmental sectors. By focusing on sustainable engineering and protective material innovation, Elias is building pathways for future technological progress where safety, resilience, and efficiency intersect. His research demonstrates a blend of theoretical rigor and practical application, strengthening the role of composites in modern engineering while contributing to scientific discourse in protective technologies. Elias Wakshume’s efforts mark him as a growing contributor to both defence technology advancement and sustainable engineering practice.

Profiel: ORCID
Publications:
  1. Experimental and analytical study on the flexural behavior a novel steel-NC-UHPC composite bridge deck system. (2025).

  2. Experimental study on negative bending resistance of steel-NC-UHPC composite bridge deck. (2025).

Tengyang Zhu – Materials Science and Engineering – Best Researcher Award

Tengyang Zhu - Materials Science and Engineering - Best Researcher Award

Shandong University - China

AUTHOR PROFILE

SCOPUS

ORCID

SUMMARY

TENGYANG ZHU is a dedicated researcher specializing in membrane separation technologies, with extensive expertise spanning gas, liquid, and ion separations. He has authored over 20 peer-reviewed SCI papers in top-tier journals and has taken a leading role in two competitive research projects. With a strong foundation in materials and chemical engineering, he brings innovation to the design and synthesis of high-performance membranes. His research is not only academically impactful but also addresses critical environmental and industrial challenges, particularly in carbon capture and bioethanol purification.

EDUCATION

Dr. Tengyang Zhu obtained his Ph.D. from the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology in 2022. He earned his Master’s degree from Taiyuan University of Technology in Materials Science and Engineering, and his Bachelor’s degree from Liaocheng University. This academic journey solidified his foundation in materials science, enabling him to pursue complex interdisciplinary research in polymer membranes and advanced separation technologies critical to sustainable energy and environmental solutions.

PROFESSIONAL EXPERIENCE

Dr. Zhu has accumulated significant research experience from his graduate studies to postdoctoral work, focusing on advanced membrane separation. He has led and contributed to several national and provincial research projects. Currently, he is actively involved in developing novel polymer membrane materials for carbon capture and selective ion separation. He has also been entrusted with independent project leadership, managing research funding, collaborating across institutions, and mentoring students and junior researchers in the laboratory.

RESEARCH INTEREST

His core research interests lie in membrane-based separation processes, including gas separation, pervaporation, and ion selectivity. He focuses on the development of high-efficiency polymer and composite membranes with tailored structures and functionalities. Dr. Zhu is particularly invested in green and scalable fabrication techniques, the understanding of transport mechanisms, and applications in energy-efficient purification and environmental remediation, such as ethanol dehydration and CO₂ capture.

AWARD AND HONOR

Dr. Zhu has secured prestigious research grants, including the Shandong Postdoctoral Science Foundation and the Natural Science Foundation of Shandong Province. These competitive awards recognize his potential and innovation in membrane research. Additionally, his multiple publications in high-impact journals and the filing of national patents highlight the academic and technological value of his contributions to chemical engineering and material sciences.

RESEARCH SKILL

Dr. Zhu is proficient in synthesizing and characterizing membrane materials using a wide array of techniques including SEM, TEM, and XRD. He demonstrates deep expertise in designing membranes with multifunctional properties and in exploring their separation mechanisms. His skillset covers polymer engineering, nanomaterials integration, and thin-film composite fabrication, positioning him as a capable researcher adept in both theoretical understanding and practical applications of separation technology.

PUBLICATIONS

Title: Coordination-enhanced ionic elastomers: Durable, self-healing, and multimodal sensors for wearable electronics and robotics
Authors: QingMing Kong, Yu Tan, Haiyang Zhang, Tengyang Zhu, Xu Wang
Journal: Chemical Engineering Journal

Title: High‐Performance and Scalable Organosilicon Membranes for Energy‐Efficient Alcohol Purification
Authors: Tengyang Zhu, Dongchen Shen, Jiayu Dong, Huan Liu, Qing Xia, Song Li, Lu Shao, Yan Wang
Journal: Advanced Functional Materials

Title: Mimosa‐Inspired Body Temperature‐Responsive Shape Memory Polymer Networks: High Energy Densities and Multi‐Recyclability
Authors: Qingming Kong, Yu Tan, Haiyang Zhang, Tengyang Zhu, Yitan Li, Yongzheng Xing, Xu Wang
Journal: Advanced Science

Title: Healable, Recyclable, and Upcyclable Gel Membranes for Efficient Carbon Dioxide Separation
Authors: Jing Xiao, Tengyang Zhu, Haiyang Zhang, Wei Xie, Renhao Dong, Yitan Li, Xu Wang
Journal: Angewandte Chemie International Edition

Title: Controllable Hydrogen-bonded Poly(dimethylsiloxane) (PDMS) Membranes for Ultrafast Alcohol Recovery
Authors: Tengyang Zhu, Jiayu Dong, Huan Liu, Yan Wang
Journal: Materials Horizons

Title: TFC membrane with in-situ crosslinked ultrathin chitosan layer for efficient water/ethanol separation enabled by multiple supramolecular interactions
Authors: Qing Xia, Tengyang Zhu, Zhengze Chai, Yan Wang
Journal: Advanced Membranes

CONCLUSION

Tengyang Zhu’s academic rigor, publication record, and leadership in innovative research projects make him a standout contributor in the field of membrane technology. His work bridges fundamental science and industrial application, advancing cleaner energy and environmental sustainability. With his ongoing projects and international publications, he is poised to make long-term contributions to the development of high-performance separation materials and systems.

Ranjit Bariki – Materials Science and Engineering – Best Researcher Award

Ranjit Bariki - Materials Science and Engineering - Best Researcher Award

UAE University - United Arab Emirates

EARLY ACADEMIC PURSUITS

DR. RANJIT BARIKI began his academic journey with a B.Sc. in Chemistry from Utkal University, followed by an M.Sc. and M.Phil. in Inorganic Chemistry at Sambalpur University. Demonstrating an early inclination toward materials science and catalysis, he pursued and completed his Ph.D. at the National Institute of Technology Rourkela in Material Chemistry, under the supervision of Prof. B.G. Mishra. His doctoral research laid a strong foundation in the synthesis and application of porous hybrid materials for sustainable energy and environmental applications.

PROFESSIONAL ENDEAVORS

Dr. Bariki has held several prestigious roles including Postdoctoral Scientist at the American University of Sharjah and UAE University. He also served as a Senior and Junior Research Fellow in India, working extensively on porous hybrid materials. His academic contributions include teaching undergraduate lab courses and guiding master's theses. He has actively participated in scientific editing roles and contributed to knowledge dissemination through freelance editorial work, combining research with communication.

CONTRIBUTIONS AND RESEARCH FOCUS

His research portfolio is richly diverse and centers on the synthesis of metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and advanced semiconductor materials. Dr. Bariki has explored applications in ammonia production, photocatalytic hydrogen evolution, biomass conversion, CO₂ reduction, and wastewater treatment. His work often emphasizes cost-effective, sustainable methods for energy and environmental remediation, utilizing complex nanostructures and heterojunction systems for enhanced photocatalytic activity.

ACCOLADES AND RECOGNITION

Dr. Bariki’s scholarly excellence is reflected in numerous accolades, including the Prof. Dayanidhi Patnaik Memorial Award by the Odisha Chemical Society, qualification in national competitive exams like CSIR-NET and GATE, and an IMA scholarship for academic merit. With over 1,100 citations, an h-index of 19, and multiple Q1 journal publications, his work has earned global recognition in photocatalysis and energy conversion.

IMPACT AND INFLUENCE

His scientific contributions have significant implications in addressing climate and energy challenges, especially through innovations in ammonia synthesis, green hydrogen production, and pollutant degradation. With multiple publications in high-impact journals such as Applied Catalysis B, Inorganic Chemistry, and Chemical Engineering Journal, Dr. Bariki has established a strong footprint in both academic and industrial research communities across India and the UAE.

LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Dr. Bariki envisions pioneering sustainable catalytic technologies that bridge academic innovation with industrial application. He aims to continue expanding his work on renewable energy solutions and photocatalysis, fostering collaborations globally. His legacy is being built upon novel catalyst architectures and a dedication to mentoring future chemists and engineers in clean energy technologies.

PUBLICATION EXCELLENCE

With over 25 high-impact publications, Dr. Bariki has significantly enriched literature on multifunctional photocatalysts and green chemistry. His papers reflect a sophisticated understanding of charge migration mechanisms, material heterojunctions, and environmental decontamination strategies. His authorship often leads key projects, as seen in his corresponding author roles, emphasizing leadership in research dissemination.

NOTABLE PUBLICATION

Title: Facile synthesis and photocatalytic efficacy of UiO-66/CdIn₂S₄ nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H₂ evolution
Authors: R. Bariki, D. Majhi, K. Das, A. Behera, B.G. Mishra
Journal: Applied Catalysis B: Environmental 270, 118882 (2020)

Title: Plasmonic Ag nanoparticle decorated Bi₂O₃/CuBi₂O₄ photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr (VI) reduction: Insight into electron transfer
Authors: D. Majhi, A.K. Mishra, K. Das, R. Bariki, B.G. Mishra
Journal: Chemical Engineering Journal 413, 127506 (2021)

Title: Facile synthesis and application of CdS/Bi₂₀TiO₃₂/Bi₄Ti₃O₁₂ ternary heterostructure: a synergistic multi-heterojunction photocatalyst for enhanced endosulfan degradation and
Authors: K. Das, R. Bariki, D. Majhi, A. Mishra, K.K. Das, R. Dhiman, B.G. Mishra
Journal: Applied Catalysis B: Environmental 303, 120902 (2022)

Title: A facile reflux method for in situ fabrication of a non-cytotoxic Bi₂S₃/β-Bi₂O₃/ZnIn₂S₄ ternary photocatalyst: A novel dual Z-scheme system with enhanced
Authors: D. Majhi, K. Das, R. Bariki, S. Padhan, A. Mishra, R. Dhiman, P. Dash, et al.
Journal: Journal of Materials Chemistry A 8(41), 21729–21743 (2020)

Title: In-situ synthesis of structurally oriented hierarchical UiO-66 (–NH₂)/CdIn₂S₄/CaIn₂S₄ heterostructure with dual S-scheme engineering for photocatalytic renewable H₂ production
Authors: R. Bariki, S.K. Pradhan, S. Panda, S.K. Nayak, D. Majhi, K. Das, B.G. Mishra
Journal: Separation and Purification Technology 314, 123558 (2023)

Ranjit Bariki – Materials Science and Engineering – Best Researcher Award

Ranjit Bariki - Materials Science and Engineering - Best Researcher Award

United Arab Emirates University - India

🎓 EARLY ACADEMIC PURSUITS

DR. RANJIT BARIKI began his academic journey with a B.Sc. in Chemistry from Utkal University, followed by an M.Sc. and M.Phil. in Inorganic Chemistry at Sambalpur University. Demonstrating an early inclination toward materials science and catalysis, he pursued and completed his Ph.D. at the National Institute of Technology Rourkela in Material Chemistry, under the supervision of Prof. B.G. Mishra. His doctoral research laid a strong foundation in the synthesis and application of porous hybrid materials for sustainable energy and environmental applications.

🏛️ PROFESSIONAL ENDEAVORS

Dr. Bariki has held several prestigious roles including Postdoctoral Scientist at the American University of Sharjah and UAE University. He also served as a Senior and Junior Research Fellow in India, working extensively on porous hybrid materials. His academic contributions include teaching undergraduate lab courses and guiding master's theses. He has actively participated in scientific editing roles and contributed to knowledge dissemination through freelance editorial work, combining research with communication.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

His research portfolio is richly diverse and centers on the synthesis of metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and advanced semiconductor materials. Dr. Bariki has explored applications in ammonia production, photocatalytic hydrogen evolution, biomass conversion, CO₂ reduction, and wastewater treatment. His work often emphasizes cost-effective, sustainable methods for energy and environmental remediation, utilizing complex nanostructures and heterojunction systems for enhanced photocatalytic activity.

🏅 ACCOLADES AND RECOGNITION

Dr. Bariki’s scholarly excellence is reflected in numerous accolades, including the Prof. Dayanidhi Patnaik Memorial Award by the Odisha Chemical Society, qualification in national competitive exams like CSIR-NET and GATE, and an IMA scholarship for academic merit. With over 1,100 citations, an h-index of 19, and multiple Q1 journal publications, his work has earned global recognition in photocatalysis and energy conversion.

🌍 IMPACT AND INFLUENCE

His scientific contributions have significant implications in addressing climate and energy challenges, especially through innovations in ammonia synthesis, green hydrogen production, and pollutant degradation. With multiple publications in high-impact journals such as Applied Catalysis B, Inorganic Chemistry, and Chemical Engineering Journal, Dr. Bariki has established a strong footprint in both academic and industrial research communities across India and the UAE.

🔗 LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Dr. Bariki envisions pioneering sustainable catalytic technologies that bridge academic innovation with industrial application. He aims to continue expanding his work on renewable energy solutions and photocatalysis, fostering collaborations globally. His legacy is being built upon novel catalyst architectures and a dedication to mentoring future chemists and engineers in clean energy technologies.

📚 PUBLICATION EXCELLENCE

With over 25 high-impact publications, Dr. Bariki has significantly enriched literature on multifunctional photocatalysts and green chemistry. His papers reflect a sophisticated understanding of charge migration mechanisms, material heterojunctions, and environmental decontamination strategies. His authorship often leads key projects, as seen in his corresponding author roles, emphasizing leadership in research dissemination.

NOTABLE PUBLICATION

Title: Facile synthesis and photocatalytic efficacy of UiO-66/CdIn₂S₄ nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H₂ evolution
Authors: R. Bariki, D. Majhi, K. Das, A. Behera, B.G. Mishra
Journal: Applied Catalysis B: Environmental 270, 118882 (2020)

Title: Plasmonic Ag nanoparticle decorated Bi₂O₃/CuBi₂O₄ photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr (VI) reduction: Insight into electron transfer
Authors: D. Majhi, A.K. Mishra, K. Das, R. Bariki, B.G. Mishra
Journal: Chemical Engineering Journal 413, 127506 (2021)

Title: Facile synthesis and application of CdS/Bi₂₀TiO₃₂/Bi₄Ti₃O₁₂ ternary heterostructure: a synergistic multi-heterojunction photocatalyst for enhanced endosulfan degradation and
Authors: K. Das, R. Bariki, D. Majhi, A. Mishra, K.K. Das, R. Dhiman, B.G. Mishra
Journal: Applied Catalysis B: Environmental 303, 120902 (2022)

Title: A facile reflux method for in situ fabrication of a non-cytotoxic Bi₂S₃/β-Bi₂O₃/ZnIn₂S₄ ternary photocatalyst: A novel dual Z-scheme system with enhanced
Authors: D. Majhi, K. Das, R. Bariki, S. Padhan, A. Mishra, R. Dhiman, P. Dash, et al.
Journal: Journal of Materials Chemistry A 8(41), 21729–21743 (2020)

Title: In-situ synthesis of structurally oriented hierarchical UiO-66 (–NH₂)/CdIn₂S₄/CaIn₂S₄ heterostructure with dual S-scheme engineering for photocatalytic renewable H₂ production
Authors: R. Bariki, S.K. Pradhan, S. Panda, S.K. Nayak, D. Majhi, K. Das, B.G. Mishra
Journal: Separation and Purification Technology 314, 123558 (2023)