Philippe KARAMIAN-SURVILLE | Composites and Homogenization | Best Researcher Award

Assoc. Prof. Dr Philippe KARAMIAN-SURVILLE | Composites and Homogenization | Best Researcher Award

Associate Professor at Unviversity of CAEN Normandy, France

Philippe Karamian is a Senior Associate Professor at the University of Caen Normandy, France, specializing in Mathematics and Mechanics. With a PhD in Mathematics and Applications (1999) and an Accreditation to Supervise Research (2014), he has made significant contributions to mechanical modeling, numerical simulation, and composite materials. He heads the Mechatronics and Embedded Systems Department at ESIX and is an active researcher at the Nicolas Oresme Mathematics Laboratory. His work spans thin shell theory, homogenization, and high-performance computing, with applications in aerospace and renewable energy.

Professional Profile

Scopus

Education 🎓

  • PhD in Mathematics and Applications, University of Caen Normandy (1999)
  • Accreditation to Supervise Research, University of Caen Normandy (2014)
  • Diploma of Advanced Studies in Mechanics, Pierre and Marie Curie University (1995)
  • Diploma of Advanced Studies in Numerical Analysis, Paris-Sud XI University (1993)
  • Master’s in Mathematics, University of Caen Normandy (1992)
  • Bachelor’s in Mathematics, University of Caen Normandy (1991)

Experience 💼

  • Senior Associate Professor, University of Caen Normandy (2018–Present)
  • Associate Professor, University of Caen Normandy (2002–2018)
  • Head of Mechatronics and Embedded Systems, ESIX (2023–Present)
  • Postdoctoral Researcher, Neurofunctional Imaging Laboratory, Bordeaux (2001)
  • Temporary Teaching and Research Attaché, University of Caen Normandy (1999–2002)

Awards and Honors 🏆

  • Fellow of the Association of Friends of Science, Academy of Sciences (2000)
  • Project Leader, ACCEA (Improvement of Conductivities of Composites for Aerospace Equipment)
  • Elected Member, Nicolas Oresme Mathematics Laboratory Council (2013–Present)
  • Head of Master’s Programs, Mechanical Engineering and Mathematical Engineering (2008–2018)

Research Focus 🔍

Philippe Karamian’s research focuses on:

  • Mechanical Modeling: Thin shells, composites, and slender structures.
  • Numerical Simulation: Finite element methods, domain decomposition, and parallel computing.
  • Homogenization Techniques: Stochastic and deterministic methods for composite materials.
  • High-Performance Computing: OpenMP/MPI environments, C/C++/Fortran programming.
  • Applications: Aerospace, renewable energy, and eco-friendly composites.

Publication Top Notes 📚

  1. Reflection of singularities in inhibited hyperbolic shells.
  2. New numerical results concerning inhibited thin hyperbolic shells.
  3. A model problem for boundary layers of thin elastic shells.
  4. Numerical experiments on the propagation of singularities in thin parabolic shells.
  5. Boundary layers in thin elastic shells with developable middle surface.
  6. Propagation of singularities and structure of layers in shells: Hyperbolic case.
  7. Non-smoothness in the asymptotics of thin shells and propagation of singularities.
  8. Pseudo-reflection phenomena for singularities in thin elastic shells.
  9. Numerical evaluation of the effective elastic properties of 2D overlapping random fiber composites.
  10. An efficient stochastic and double-scale model to evaluate effective elastic properties.
  11. Domain decomposition methods to evaluate effective elastic properties of random fiber composites.
  12. Effects of fiber dispersion on the effective elastic properties of 2D overlapping random fiber composites.
  13. Influence of morphological parameters of a 2D random short fiber composite on its effective elastic properties.
  14. On efficient and reliable stochastic generation of RVEs for analysis of composites.
  15. An efficient and automated 3D FE approach to evaluate effective elastic properties.
  16. Measure of combined effects of morphological parameters of inclusions within composite materials.
  17. The refraction phenomenon of singularities in thin elastic shells with developable mid-surface.
  18. Computation of effective electrical conductivity of composite materials: A novel approach based on analysis of graphs.

Conclusion 🌟

Philippe Karamian is a distinguished academic and researcher with over two decades of expertise in mechanical modeling, numerical simulation, and composite materials. His work bridges theoretical advancements and practical applications, particularly in aerospace and renewable energy. With a strong focus on innovation and sustainability, he continues to lead groundbreaking research and mentor the next generation of engineers and scientists.

 

Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assist. Prof. Dr Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assistant Professor, Concordia University, Canada

Dr. Hang Xu is an Assistant Professor in the Department of Mechanical, Industrial, and Aerospace Engineering at Concordia University, Montreal, Canada. With a Ph.D. in Mechanical Engineering from McGill University and an MSc in Aircraft Design from Beijing University of Aeronautics and Astronautics, Dr. Xu specializes in mechanical metamaterials, smart structures, and additive manufacturing. His research focuses on developing advanced materials with programmable morphing and motion for aerospace, medical, and robotic applications. Prior to joining Concordia, he held research positions at Imperial College London and Siemens, contributing to innovations in multi-stable structures, soft robotics, and medical devices. Dr. Xu is recognized for his teaching excellence and has received awards for his contributions to research during the COVID-19 pandemic.

Professional Profile

Orcid

Scopus

Education 🎓

  • Doctorate in Mechanical Engineering, McGill University (2013–2018)
    Supervisor: Damiano Pasini
  • Master’s Thesis in Aircraft Design, Beijing University of Aeronautics and Astronautics (2011–2013)
    Supervisor: Yuanming Xu
  • Bachelor’s in Aircraft Design and Engineering, Shenyang Aerospace University (2007–2011)
    Supervisor: Weiping Zhang

Experience 💼

  • Assistant Professor, Concordia University (2022–Present)
    Research on functional/smart metamaterials for aerospace, nautical, and medical applications.
  • Research Associate, Imperial College London (2020–2022)
    Developed multi-stable structures, soft robots, and medical devices.
  • Postdoctoral Researcher, McGill University (2018–2020)
    Worked on thermally actuated deployable mechanisms and additive manufacturing processes.
  • Internships: Chinese Aircraft Design Institute of Aviation Medicine (2012–2013) and Shenyang Aircraft Design Institute (2010–2011).

Awards and Honors 🏆

  • Teaching Excellence Award, Concordia University (2023)
  • Associate Fellowship of the Higher Education Academy (AFHEA), UK (2022)
  • Excellent Contribution to Research in COVID-19 Pandemic, Imperial College London (2021)
  • Winner of 3D-Printing Workshop Design Challenge, McGill University (2019)

Research Focus 🔬

Dr. Xu’s research focuses on mechanical metamaterialssmart materials and structures, and additive manufacturing. His work aims to develop materials with programmable morphing and motion for applications in aerospace structuressoft roboticsmedical devices, and composite materials. Key areas include multiscale mechanics, finite element analysis, and the design of multi-stable structures for innovative functionalities.

Publication Top Notes 📚

  1. Embedded pressure sensing metamaterials using TPU-graphene composites and additive manufacturing
  2. Generalized tessellations of superellipitcal voids in low porosity architected materials for stress mitigation
  3. Thermally actuated hierarchical lattices with large linear and rotational expansion
  4. Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  5. ABAQUS user subroutine UMAT for elastoplastic nonlinear kinematic hardening material (Mróz model) with anisotropic plasticity
  6. Digitally Programmable Architected Materials with Static and Dynamic Reconfiguration
  7. Multi-stable meta-materials with programmable reconfigurations for soft robots
  8. 3D printed soft metamaterial force sensors for gait monitoring using TPU-graphene composites
  9. Overcoming the strength-modulus tradeoff using double network metamaterial lattices
  10. Multi-stable architectured materials with high-mobility morphing

Conclusion 🌟

Dr. Hang Xu is a leading researcher in mechanical metamaterials and smart structures, with a strong focus on innovative applications in aerospace, robotics, and medical devices. His contributions to teaching, research, and industry collaborations highlight his commitment to advancing materials science and engineering. Through his work, Dr. Xu continues to push the boundaries of programmable materials, paving the way for future technological advancements. 🚀

 

Ifeyinwa Ijeoma Obianyo – Materials Science and Engineering – Women Researcher Award

Ifeyinwa Ijeoma Obianyo - Materials Science and Engineering - Women Researcher Award

Nile University of Nigeria Abuja Nigeria - Nigeria

AUTHOR PROFILE

SCOPUS
GOOGLE SCHOLAR

IFYENIWA IJEOMA OBIANYO 👷‍♀️

Ifeyinwa Ijeoma Obianyo is a dedicated Civil Engineer and Materials Scientist, specializing in the strength of materials and sustainable binders. With extensive expertise in low-carbon concrete, waste valorization, and eco-friendly building materials, she is committed to advancing sustainable construction practices. Her research is driven by a desire to innovate within the field of civil engineering, focusing on mechanical properties of construction materials that contribute to greener building solutions.

ACADEMIC AND RESEARCH EXCELLENCE 📚

Currently a Lecturer and Researcher at Nile University of Nigeria, Ifeyinwa's academic journey has been marked by significant contributions to the field of civil engineering. She coordinates M.Eng. theses and actively engages in research that combines practical applications with theoretical knowledge. Her work not only addresses contemporary challenges in construction materials but also enhances the educational experiences of her students through innovative teaching methodologies.

PROJECT MANAGEMENT SKILLS 📊

In her role as a Project Manager and Supervisor, Ifeyinwa oversees various research projects, ensuring they meet both academic and industry standards. Her leadership skills enable her to guide teams effectively, fostering collaboration and promoting a culture of excellence. By managing diverse projects, she helps to translate research findings into real-world applications, impacting the construction industry positively.

CONFERENCE PARTICIPATION 🎤

Ifeyinwa is an active participant in international conferences and technical sessions, where she presents her research findings and engages with fellow researchers. Her presentations focus on sustainable practices in civil engineering, showcasing advancements in materials science that contribute to eco-friendly construction. Through these platforms, she shares her knowledge and builds networks that further her research impact.

PUBLICATIONS AND EDITORIAL ROLES 📝

As an author and reviewer for Scopus-indexed journals, Ifeyinwa contributes significantly to the body of knowledge in her field. She serves as an Editorial Assistant for the Nile Journal of Engineering and Applied Science, ensuring the quality and integrity of published research. Her publication record reflects her commitment to advancing scientific understanding and promoting sustainable engineering practices.

STEM OUTREACH INITIATIVES 🌱

Passionate about education and community engagement, Ifeyinwa facilitates Science Outreach Programmes and STEM projects aimed at inspiring the next generation of engineers. Through her outreach efforts, she emphasizes the importance of sustainable practices in engineering and motivates young minds to pursue careers in the sciences. Her dedication to fostering interest in engineering among youth highlights her commitment to building a more sustainable future.

FUTURE VISION 🌍

Ifeyinwa envisions a future where sustainable materials dominate the construction industry, significantly reducing the carbon footprint of buildings. She aims to continue her research on innovative materials and methods, contributing to the development of low-carbon solutions. Through her work, she aspires to lead the charge toward a more sustainable and resilient built environment, making a lasting impact in the field of civil engineering.

NOTABLE PUBLICATION

Title: Decision Tree Regression vs. Gradient Boosting Regressor Models for the Prediction of Hygroscopic Properties of Borassus Fruit Fiber
Authors: A.A. Mahamat, M.M. Boukar, N. Leklou, T.T. Stanislas, H. Savastanos
Year: 2024
Journal: Applied Sciences (Switzerland), 14(17), 7540

Title: A Machine Learning Led Investigation Predicting the Thermos-mechanical Properties of Novel Waste-based Composite in Construction
Authors: A.A. Mahamat, M.M. Boukar, N. Leklou, N.M. Ibrahim, H. Savastano
Year: 2024
Journal: Waste and Biomass Valorization, 15(9), pp. 5445–5461

Title: Multi-objective Optimization of the Flow Condition of Binary Constituent Net-zero Concretes Towards Carbon Neutrality-built Environment Pathway
Authors: C. Garcia, K.C. Onyelowe, P.E. Valverde Aguirre, A.A. Baig Moghal, L.U. Stephen
Year: 2024
Journal: Journal of Building Pathology and Rehabilitation, 9(1), 60

Title: Evaluation of Predictive Models for Mechanical Properties of Earth-Based Composites for Sustainable Building Applications
Authors: I.I. Obianyo, A.P. Onwualu, A.A. Mahamat
Year: 2024
Book Chapter: Studies in Systems, Decision and Control, 547, pp. 179–190

Title: The Influence of Fines on the Hydro-mechanical Behavior of Sand for Sustainable Compacted Liner and Sub-base Construction Applications
Authors: K.C. Onyelowe, A.M. Ebid, S. Hanandeh, L.U. Stephen, O.A. Ubachukwu
Year: 2024
Journal: Asian Journal of Civil Engineering, 25(1), pp. 623–635