Everton – Artificial Intelligence – Best Researcher Award

Everton - Artificial Intelligence - Best Researcher Award

Universidade Federal da Grande Dourados - Brazil

AUTHOR PROFILE

SCOPUS

ACADEMIC AFFILIATION

Everton is associated with Universidade Católica Dom Bosco, where he contributes to cutting-edge research in computer vision and its applications in agriculture and urban studies.

PRECISION AGRICULTURE RESEARCH

His research in precision agriculture includes the integration of UAV technology and machine learning to optimize farming practices. By improving weed and pest detection methods, his work supports sustainable agriculture and food security.

COMPUTER VISION IN AGRICULTURE

Everton's expertise in computer vision extends to various agricultural applications, from crop monitoring to automated harvesting systems. His innovative solutions help in increasing agricultural productivity and efficiency.

REAL-TIME WEED DETECTION IN SOYBEAN USING UAV IMAGES

Everton Castelão Tetila specializes in the real-time detection of weeds in soybean fields through the innovative use of UAV (Unmanned Aerial Vehicle) images. His work significantly contributes to precision agriculture, enabling farmers to identify and manage weeds more efficiently.

YOLO PERFORMANCE ANALYSIS FOR SOYBEAN PEST DETECTION

Everton has conducted extensive performance analysis of the YOLO (You Only Look Once) algorithm for the real-time detection of soybean pests. His research enhances pest management practices, ensuring timely interventions and reducing crop damage.

URBAN AREA CLASSIFICATION AND MONITORING USING COMPUTER VISION

He applies advanced computer vision techniques for the classification and monitoring of urbanized areas. This work aids in urban planning and development, providing detailed and accurate assessments of urban growth and infrastructure.

EDUCATIONAL CONTRIBUTIONS

He is dedicated to advancing education in his field, sharing his knowledge and findings through publications and presentations. His contributions help train the next generation of researchers and professionals in computer vision and its agricultural applications.

NOTABLE PUBLICATION

YOLO performance analysis for real-time detection of soybean pests
Authors: E.C. Tetila, F.A.G. da Silveira, A.B. da Costa, H. Pistori, J.G.A. Barbedo
Year: 2024
Journal: Smart Agricultural Technology, 7, 100405

Title: Classification and monitoring of urbanized areas using computer vision techniques | Classificação e monitoramento de áreas urbanizadas usando técnicas de visão computacional
Authors: E.C. Tetila, P.M. de Moraes, M. Constantino, M.M.D.M. Greco, H. Pistori
Year: 2023
Journal: Desenvolvimento e Meio Ambiente, 61, pp. 32–42

Title: An approach for applying natural language processing to image classification problems
Authors: G. Astolfi, D.A. Sant'Ana, J.V.D.A. Porto, E.T. Matsubara, H. Pistori
Year: 2022
Journal: Neurocomputing, 513, pp. 372–382

Title: Performance Analysis of YOLOv3 for Real-Time Detection of Pests in Soybeans
Authors: F.A.G. Silveira, E.C. Tetila, G. Astolfi, A.B. Costa, W.P. Amorim
Year: 2021
Conference: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13074 LNAI, pp. 265–279

Title: Associative classification model for forecasting stock market trends
Authors: E.C. Tetila, B.B. MacHado, J.F. Rorigues, M. Constantino, H. Pistori
Year: 2021
Journal: International Journal of Business Intelligence and Data Mining, 19(1), pp. 97–112

Fangyu Wu – Artificial Intelligence – Best Researcher Award

Fangyu Wu - Artificial Intelligence - Best Researcher Award

AUTHOR PROFILE

SCOPUS

ACADEMIC AND PROFESSIONAL BACKGROUND

Fangyu Wu is a distinguished researcher and academic in the field of computer science, specializing in deep learning, multi-modal learning, and intelligent data analysis. He is currently an Associate Professor at Xi’an Jiaotong-Liverpool University (XJTLU) in China, where he supervises PhD and Master's students focusing on innovative research topics such as multi-modal learning and deep learning for computer vision. His previous role included co-supervising PhD students at Zhejiang University, contributing to advancements in facial recognition and image-text retrieval.

HONORS AND AWARDS

Dr. Wu's achievements have been recognized through several prestigious awards. He was named a Suzhou Youth Innovation Leading Talent in 2023 and won first prize at the 7th China Innovation Challenge for his project on intelligent tracking systems using infrared thermal imaging. Additionally, he received the Lotfi Zadeh Best Paper Award at ICMLC&ICWAPR 2017 and has been honored with the Outstanding Graduates award from Xi’an Jiaotong-Liverpool University and National Encouragement Scholarships from China.

RESEARCH PROJECTS

Fangyu Wu leads several high-impact research projects. These include “Intelligent Multimodal Data Analysis for Digital Twin Cities” under the Gusu Innovation and Entrepreneurship Leading Talents Programme, and “Relational Modeling and Reasoning for Reliable Cross-Modal Retrieval” funded by the Zhejiang Natural Science Foundation. His projects also cover advanced topics such as distributed AI platforms for Metaverse scenarios and optimization software for injection molding processes.

PUBLICATIONS

Dr. Wu has an extensive list of publications in top-tier conferences and journals. Notable works include papers on fine-grained image-text matching, relation-aware prototype networks, and pose-robust face recognition. His research has been featured at prestigious conferences such as CVPR, ECCV, and ICPR, showcasing his contributions to advancements in deep learning and computer vision.

CONFERENCE ORGANIZATION

In addition to his research, Fangyu Wu plays a vital role in organizing academic conferences. He served as the Publication Chair for the IEEE 17th International Conference on Computer Science & Education (ICCSE 2022) and as General Co-Chair for the 5th International Symposium on Emerging Technologies for Education (SETE 2020). His involvement ensures the smooth execution of these events and contributes to the dissemination of cutting-edge research.

STUDENT SUPERVISION

Fangyu Wu is actively engaged in supervising students at both the PhD and Master’s levels. He currently supervises a PhD student at XJTLU focusing on multi-modal learning and has previously co-supervised a PhD student at Zhejiang University on deep learning for computer vision. His mentorship extends to six Master’s students at XJTLU and three at Zhejiang University, covering areas such as facial recognition and image-text retrieval.

COMPETITIONS AND RECOGNITION

Dr. Wu has achieved notable success in various competitions. His project on human motion recognition based on deep neural networks won third prize at the China First Smart Manufacturing and Big Data Innovation Competition. Additionally, his participation in competitions has been marked by significant awards, including the first prize in the China Innovation Challenge for his intelligent tracking system.

NOTABLE PUBLICATION

  • Fine-grained Image-text Matching by Cross-modal Hard Aligning Network
    • Authors: Pan, Z., Wu, F., Zhang, B.
    • Year: 2023
    • Conference: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)
    • Pages: 19275–19284
  • Knowledge-embedded Prompt Learning for Zero-shot Social Media Text Classification
    • Authors: Li, J., Chen, Q., Wang, W., Wu, F.
    • Year: 2023
    • Conference: IEEE International Conference on Smart Computing (SMARTCOMP)
    • Pages: 222–224
  • Kernel Triplet Loss for Image-Text Retrieval
    • Authors: Pan, Z., Wu, F., Zhang, B.
    • Year: 2022
    • Conference: Computer Animation and Virtual Worlds
    • Article: e2093
  • FaceCaps for Facial Expression Recognition
    • Authors: Wu, F., Pang, C., Zhang, B.
    • Year: 2021
    • Conference: Computer Animation and Virtual Worlds
    • Article: e2021