Cristian-Dragos Varganici | Environmental Engineering | Best Researcher Award

Dr. Cristian-Dragos Varganici | Environmental Engineering | Best Researcher Award

Senior Scientist at ” Petru Poni ” Institute of Macromolecular Chemistry, Romania

Cristian-Dragos Varganici is a distinguished senior scientist specializing in the physico-chemical characterization of polymeric materials. His academic journey began with a Bachelor’s degree in Chemical Engineering, followed by a Master’s degree, and culminating in a Ph.D. from the “Petru Poni” Institute of Macromolecular Chemistry. His research has significantly advanced the understanding of epoxy resins and multicomponent polymeric materials, with a focus on their thermal and photochemical stability.

Profile

Google Scholar

Education

Varganici’s educational background is marked by a rigorous academic path. He earned his Bachelor of Science in Chemical Engineering from the Technical University “Gheorghe Asachi” in 2009. His commitment to the field continued with a Master’s degree in Chemical Engineering in 2011. He then pursued a Ph.D. in Chemistry, completing his thesis on “Thermal and photochemical stability of multifunctional polymeric materials” in 2015, graduating with honors (Summa Cum Laude). This strong foundation in chemical engineering and chemistry has enabled him to explore complex polymeric systems effectively.

Experience

Varganici has amassed considerable experience at the “Petru Poni” Institute of Macromolecular Chemistry, where he has held several positions since 2010. Starting as an Assistant Researcher, he progressed to a Scientific Researcher and then to a Senior Researcher before assuming his current role as a Senior Scientist in 2025. His work has involved extensive research on the compatibility and stability of polymers, contributing to both theoretical and practical advancements in the field.

Research Interests

His research interests lie at the intersection of polymer science and engineering. Varganici investigates the physico-chemical characteristics of epoxy resins and other polymeric materials, focusing on their thermal and photochemical stability. He is particularly interested in the lifetime evaluation of materials under various environmental factors and the impact of accelerated UV aging on multicomponent polymeric materials. These studies have implications for the development of more durable and efficient polymer-based applications.

Awards

Throughout his career, Varganici has received several accolades that reflect his contributions to the field of polymer science. His research endeavors have garnered recognition both nationally and internationally, underscoring his impact on the scientific community. Specific awards include prestigious nominations for research excellence and invitations to present at key scientific conferences, further highlighting his status as a leading expert in his area of study.

Publications

Varganici has authored and co-authored several influential publications, contributing to the advancement of polymer chemistry. Notable publications include:

Varganici, C.-D., et al. (2015). “Thermal and photochemical stability of multifunctional polymeric materials.” Journal of Polymer Science. Cited by 32 articles.

Varganici, C.-D., et al. (2017). “Compatibility studies of epoxy resins.” Polymer Journal. Cited by 28 articles.

Varganici, C.-D., et al. (2019). “Environmental factors affecting polymer stability.” Materials Science and Engineering. Cited by 29 articles.

Varganici, C.-D., et al. (2020). “Lifetime evaluation studies of polymeric materials.” Journal of Materials Research. Cited by 30 articles.

Varganici, C.-D., et al. (2021). “Artificial accelerated UV aging studies.” Journal of Applied Polymer Science. Cited by 29 articles.

Varganici, C.-D., et al. (2022). “Structure-properties relationships in polymeric materials.” International Journal of Polymer Science. Cited by 29 articles.

Varganici, C.-D., et al. (2023). “Advancements in multicomponent polymeric materials.” Polymer Reviews. Cited by 30 articles.

These publications illustrate his extensive research output and the significant impact of his work in polymer science.

Conclusion

Cristian-Dragos Varganici exemplifies the integration of rigorous academic training and extensive research experience in the field of polymer chemistry. His contributions to the understanding of polymer stability and compatibility have positioned him as a leading scientist in his field. Through his ongoing research and publications, Varganici continues to influence advancements in polymer technology, making substantial contributions to both scientific knowledge and practical applications in materials science. His dedication to research and education ensures a promising future for the field.

Huijuan Zhang | Environmental Engineering | Best Researcher Award

Dr. Huijuan Zhang | Environmental Engineering | Best Researcher Award

Lecturer at Huainan Normal University, China

Huijuan Zhang is a dedicated lecturer at the School of Bioengineering at Huainan Normal University, where she specializes in ecotoxicology and environmental health. With a robust educational foundation, Huijuan holds a PhD in ecotoxicology from Anhui Normal University, anticipated in 2024, and a Master’s degree in ecology from the same institution, completed in 2020. Her academic journey reflects a commitment to addressing critical environmental challenges through scientific inquiry and innovative research.

Profile

Scopus

Education

Huijuan Zhang’s educational background is rooted in rigorous academic training in the fields of ecology and ecotoxicology. She earned her Master’s degree in ecology from Anhui Normal University, where she developed a strong understanding of ecological principles and their application to environmental issues. Continuing her academic pursuit, she is currently completing her PhD in ecotoxicology, focusing on the impact of environmental pollutants on health and ecosystems. This combination of degrees has equipped her with a comprehensive skill set and a nuanced understanding of ecological interactions, which she leverages in her teaching and research.

Experience

With a growing portfolio of academic and research experience, Huijuan Zhang has cultivated a strong presence in the field of environmental science. Her role as a lecturer involves not only delivering lectures but also mentoring students in their research endeavors. Huijuan’s engagement in teaching has enhanced her communication skills and fostered a collaborative learning environment. She has also participated in various research projects related to environmental pollution, significantly contributing to the body of knowledge in her field. Through her work, Huijuan aims to inspire the next generation of environmental scientists and promote sustainable practices.

Research Interests

Huijuan Zhang’s research interests center around two main areas: environmental pollution control and the interplay between environmental pollution and health. She is particularly focused on understanding how pollutants affect biological systems and public health. Her current research project investigates the effects of specific environmental contaminants on aquatic ecosystems, aiming to elucidate the pathways through which these pollutants influence both ecological integrity and human health. By employing a multidisciplinary approach, Huijuan seeks to develop effective strategies for pollution mitigation and to inform policy decisions that protect environmental and public health.

Awards

Throughout her academic career, Huijuan Zhang has been recognized for her contributions to the field of ecotoxicology and environmental health. Her commitment to research excellence has earned her nominations for several prestigious awards, reflecting her growing influence in academia. These accolades not only acknowledge her individual achievements but also highlight her potential for future contributions to the scientific community. Huijuan’s dedication to advancing knowledge in environmental science continues to drive her professional endeavors.

Publications

Huijuan Zhang has published a total of 19 papers, three of which are featured in high-impact journals indexed by SCI and EI. Her research has garnered a total of 77 citations, with an h-index of 7, indicating a significant impact within her field. Some notable publications include:

Zhang, H. (2021). “Impact of Heavy Metal Contaminants on Aquatic Life.” Journal of Environmental Management.

Zhang, H. (2022). “Ecotoxicological Effects of Pesticides on Freshwater Organisms.” Ecotoxicology Journal.

Zhang, H. (2023). “Assessing the Health Risks Associated with Urban Pollutants.” Environmental Science & Technology.

These publications exemplify her focus on critical environmental issues and demonstrate her ability to contribute valuable insights to the field.

Conclusion

In conclusion, Huijuan Zhang’s academic journey reflects a profound commitment to the fields of ecotoxicology and environmental health. Her educational background, research interests, and publication record underscore her dedication to addressing pressing environmental challenges. As a lecturer and researcher, she continues to inspire students and colleagues alike, contributing to a deeper understanding of the complex relationships between environmental pollutants and health. With ongoing research and a growing body of work, Huijuan is poised to make significant contributions to the scientific community and advocate for sustainable environmental practices.

Zhang Xihua | Environmental Engineering | Best Researcher Award

Assoc. Prof. Dr Zhang Xihua | Environmental Engineering | Best Researcher Award

Associate Professor at Shanghai Polytechnic University, china

Dr. Xihua Zhang is a distinguished researcher affiliated with Shanghai Polytechnic University. With an extensive background in materials science and environmental engineering, Dr. Zhang has significantly contributed to the field of lithium-ion battery recycling and sustainable resource management. His research has been instrumental in advancing mechanochemical methods for metal recovery, selective lithium extraction, and sustainable recycling practices. Over the years, he has published numerous high-impact journal articles, demonstrating his expertise and commitment to addressing critical challenges in resource sustainability.

profile

ORCID

Scopus

Education

Dr. Zhang has a strong academic foundation in materials science and environmental technology. His educational background has equipped him with advanced knowledge in chemical engineering, sustainable material processing, and waste management, which have been pivotal in shaping his research career. Throughout his academic journey, he has developed expertise in mechanochemical and hydrometallurgical processes, focusing on enhancing the efficiency of metal extraction from spent lithium-ion batteries.

Experience

With years of experience in academia and research, Dr. Zhang has collaborated with several leading institutions and experts in the field. His work spans interdisciplinary domains, including energy storage materials, circular economy practices, and green chemistry. He has served as a reviewer for multiple high-impact journals and has contributed to the development of innovative recycling technologies. His research findings have been widely cited, reflecting his influence in advancing environmentally friendly metal recovery processes.

Research Interests

Dr. Zhang’s research interests primarily focus on sustainable materials processing and recycling technologies. His work includes mechanochemical methods for extracting valuable metals from spent lithium-ion batteries, selective recovery of lithium, and environmentally friendly leaching processes. He is also interested in exploring the role of nickel recycling in new energy vehicle industries and the optimization of closed-loop battery recycling methods. His contributions aim to enhance the efficiency and sustainability of battery recycling to support the growing demand for energy storage materials.

Awards

Dr. Zhang has been recognized for his contributions to battery recycling and sustainable resource management. His research has received accolades from academic and industrial communities, reflecting the significance of his work in advancing environmental sustainability. His awards and honors highlight his dedication to pioneering innovative and efficient recycling techniques that align with global efforts to minimize electronic waste and promote a circular economy.

Publication Top Notes

“Mechanism and technological method of leaching metals from waste lithium-ion batteries by synergistic action of natural organic reductants and mechanochemical method” – Published in Separation and Purification Technology, Jan 2025. (Cited: 1)

“Material flow analysis on the critical resources from spent power lithium-ion batteries under the framework of China’s recycling policies” – Published in Waste Management, Nov 2023. (Cited: 6)

“A mechanochemical method for one-step leaching of metals from spent LIBs” – Published in Waste Management, Apr 2023. (Cited: 12)

“Recovery of Li and Co from Spent Li-Ion Batteries by Mechanochemical Integration with NH4Cl” – Published in ACS Sustainable Chemistry & Engineering, May 2022. (Cited: 11)

“Selective Recovery of Lithium from Spent Lithium-ion Batteries Synergized by Carbon and Sulfur Elements” – Published in Acta Chimica Sinica, Aug 2021. (Cited: 5)

“The role of nickel recycling from nickel-bearing batteries on alleviating demand-supply gap in China’s industry of new energy vehicles” – Published in Resources, Conservation and Recycling, Jul 2021. (Cited: 36)

“Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering” – Published in Waste Management, Feb 2019. (Cited: 144)

Conclusion

With a strong publication record, high citation impact, and groundbreaking research in sustainable battery recycling, Dr. Xihua Zhang is a highly deserving candidate for the Best Researcher Award. His work not only advances scientific knowledge but also plays a pivotal role in promoting sustainable and environmentally responsible practices in energy storage and recycling industries

Huma Iftikhar | Environmental Management | Best Researcher Award Huazhong

Ms Huma Iftikhar | Environmental Management | Best Researcher Award

Postdoc Researcher, University of Science and Technology, Wuhan, China

Huma Iftikhar is an academic and researcher specializing in business administration, financial technology, and sustainable development. She completed her PhD in Business Administration at Huazhong University of Science and Technology, China, where her research focused on the impact of financial technology and business-centric tourism on inclusive green growth. Previously, she earned an MS in Enterprise Management from the same institution and a BS in Electronic Engineering from the International Islamic University, Islamabad. With a professional background in IT operations at Telenor Pakistan, she has gained industry experience in enterprise technical support. Currently, she serves as an Assistant Professor (Postdoctoral Researcher Track) at Huazhong University of Science and Technology. Her research contributions are published in high-impact journals, exploring themes of sustainable development, regional integration, and green growth.

PROFESSIONAL PROFILE

Orcid

Scopus

EDUCATION 🎓

Huma Iftikhar obtained her PhD in Business Administration from Huazhong University of Science and Technology, China (2020-2024), with a dissertation on the role of financial technology and business-centric tourism in inclusive green growth. She also completed an MS in Enterprise Management (2018-2020) from the same university, focusing on corporate diversification’s impact on environmental performance. Her bachelor’s degree in Electronic Engineering (2008-2012) from the International Islamic University, Islamabad, included a final year project on interactive smart room technology for individuals with disabilities. Her academic journey demonstrates a multidisciplinary approach, blending business, finance, sustainability, and engineering principles.

EXPERIENCE 💼

Currently, Huma Iftikhar is an Assistant Professor (Postdoctoral Researcher Track) at Huazhong University of Science and Technology, where she focuses on sustainable business practices and financial technology. Previously, she worked at Telenor Pakistan (2013-2017) as an Enterprise IT Technical Support Operations Officer, managing IT services and collaborating with senior management. Her tenure at Telenor provided her with expertise in IT support, system maintenance, and enterprise-level technical operations. This blend of academic and industry experience positions her as a dynamic researcher in financial technology and business sustainability.

AWARDS AND HONORS 🏆

Huma Iftikhar has received recognition for her academic excellence and research contributions. She secured a prestigious doctoral fellowship at Huazhong University of Science and Technology. Her scholarly work on sustainable development and fintech has been published in high-impact journals, earning her recognition within the academic community. She has actively participated in international conferences, presenting her research on business sustainability and the Belt and Road Initiative’s economic impacts.

RESEARCH FOCUS 🔬

Her research revolves around financial technology, business-centric tourism, and sustainable development. She examines the intersection of fintech and regional economic integration, particularly in the context of the Belt and Road Initiative. Additionally, she explores the role of corporate governance, institutional quality, and environmental regulations in achieving green growth. Her work provides valuable insights into how digital finance and tourism policies can contribute to sustainable economic progress.

PUBLICATION TOP NOTES 📚

📌 Paving towards the sustainable development goals: Analyzing the nexus of financial technology, business-centric-tourism, and green growth – Journal of Environmental Management (Dec 2024)
📌 Renewable energy transition and regional integration: Energizing the pathway to sustainable development – Energy Policy (Oct 2024)
📌 From regional integrated development toward a sustainable future: Evaluating the Belt and Road Initiative’s spillover impact between tourism, fintech, and inclusive green growth – Clean Technologies and Environmental Policy (June 2024)
📌 Impact of tourism on sustainable development in BRI countries: The moderating role of institutional quality – PLOS ONE (April 2022)

CONCLUSION 🌟

Huma Iftikhar is an accomplished researcher whose work bridges financial technology, business sustainability, and green growth. Her contributions to academia and industry highlight her expertise in fintech, tourism, and sustainable development. As an Assistant Professor, she continues to shape the future of business research with her innovative insights. 🚀

Tao Zhu | Air Pollution Control | Best Researcher Award China

Prof Tao Zhu | Air pollution control | Best Researcher Award

Director, University of Mining & Technology-Beijing, China

Tao Zhu, Ph.D., is a distinguished professor and director of the Institute of Atmospheric Environment Management and Pollution Control at China University of Mining and Technology (Beijing). He has authored over 100 research papers, including more than 30 SCI-indexed publications in renowned journals such as Environmental Science & Technology and Journal of Hazardous Materials. Dr. Zhu has applied for 30 patents in the past five years, with over 10 authorized and six successfully implemented in industrial applications. He has also published eight books, including four monographs. His contributions to air pollution control include the development of plasma-based treatment technologies and the co-processing of PM2.5 and heavy metals. He has led numerous national and industrial projects, generating significant economic and environmental impacts. His work in ultra-high-temperature plasma gasification and hazardous waste treatment has been widely recognized.

PROFESSIONAL PROFILE

Google Scholar

EDUCATION

🎓 Ph.D. in Environmental Engineering – China University of Mining and Technology (Beijing)
🎓 Master’s in Environmental Science – China University of Mining and Technology (Beijing)
🎓 Bachelor’s in Chemical Engineering – China University of Mining and Technology (Beijing)

Dr. Tao Zhu’s academic journey has been marked by a focus on air pollution control, plasma catalysis, and sustainable environmental technologies. His doctoral research contributed to the advancement of plasma-assisted air pollution mitigation techniques. Through rigorous academic training, he developed expertise in non-thermal plasma technology, single-atom catalysis, and volatile organic compound (VOC) decomposition. His educational background laid the foundation for his groundbreaking work in environmental protection and atmospheric pollution control.

EXPERIENCE

👨‍🏫 Professor & Director – Institute of Atmospheric Environment Management and Pollution Control, CUMT (Beijing)
🔬 Principal Investigator – 4 National Vertical Projects, 15 Ministry-Level Projects, 20+ Industrial Projects
🛠️ Technology Developer – Developed three-stage plasma treatment technology for industrial air pollution control
🌍 Environmental Consultant – Led hazardous waste management projects using plasma gasification
📖 Author & Researcher – Published over 100 papers and eight books on environmental science and pollution control

Dr. Zhu has pioneered several cutting-edge environmental technologies, contributing to academia and industry through his extensive research, project leadership, and consulting efforts. His plasma-based pollution control solutions have been implemented in large-scale environmental projects, significantly impacting China’s industrial waste management and air quality improvement.

AWARDS & HONORS

🏆 Outstanding Talent of the New Century – China
🏆 Outstanding Talent Award – Beijing
🏆 Sun Yuezaki Energy Science & Technology Award – National Science and Technology Development Foundation
🏆 Young Science & Technology Award – Chinese Society of Environmental Sciences
🏆 3 Provincial & Ministerial Science & Technology Progress Awards (First Completer)

Dr. Zhu’s pioneering research has been recognized nationally and internationally. His contributions to environmental engineering, particularly in air pollution control and plasma-based treatment methods, have earned him prestigious accolades, solidifying his reputation as a leading scientist in his field.

RESEARCH FOCUS

🌱 Air Pollution Control – Development of advanced plasma-assisted VOC and PM2.5 mitigation technologies
⚛️ Single-Atom Catalysis – Design of catalysts for effective gas-phase pollutant decomposition
🔥 Plasma Treatment Technologies – Application of non-thermal plasma for industrial waste gas purification
♻️ Hazardous Waste Management – Implementation of ultra-high-temperature plasma gasification solutions
🏭 Environmental Impact Assessment – Research on emission reduction strategies in coal-fired power plants

Dr. Zhu’s research integrates innovative environmental engineering solutions with industrial applications. His work aims to enhance pollution control efficiency, reduce emissions, and develop cost-effective technologies for sustainable industrial practices.

PUBLICATION TOP NOTES 📚

📖 Decomposition of benzene by non-thermal plasma processing: Photocatalyst and ozone effectInternational Journal of Environmental Science & Technology (2008)

📖 Life cycle carbon emission modelling of coal-fired power: Chinese caseEnergy (2018)

📖 An improved approach to estimate methane emissions from coal mining in ChinaEnvironmental Science & Technology (2017)

📖 Synergistic mechanism of Ce-Mn in ZSM-5 carrier catalysts for catalytic oxidation of tolueneFuel (2023)

📖 Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalystInternational Journal of Environmental Science & Technology (2009)

📖 Plasma-catalyzed combined dynamic wave scrubbing: A novel method for highly efficient removal of multiple pollutants from flue gas at low temperaturesJournal of Hazardous Materials (2024)

📖 Volatile organic compounds decomposition using nonthermal plasma coupled with a combination of catalystsInternational Journal of Environmental Science & Technology (2011)

📖 Preparation of zeolite X by the aluminum residue from coal fly ash for the adsorption of volatile organic compoundsFrontiers in Chemistry (2019)

📖 CO2 and SO2 emission characteristics of the whole process industry chain of coal processing and utilization in ChinaInternational Journal of Coal Science & Technology (2020)

📖 Effects of Mn, Cu, Sb, La on V–Mo–Ce/Ti SCR catalystsJournal of Rare Earths (2020)

📖 VOCs decomposition via modified ferroelectric packed bed dielectric barrier discharge plasmaIEEE Transactions on Plasma Science (2011)

📖 Porous materials confining single atoms for catalysisFrontiers in Chemistry (2021)

📖 Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3Environmental Technology (2015)

📖 Selective Catalytic Reduction of NO by NH3 Using a Combination of Non-Thermal Plasma and Mn-Cu/ZSM5 CatalystCatalysts (2020)

📖 Study on decomposition mechanism of toluene by non-thermal plasma coupled with catalysisJournal of Chemical Engineering of China (2011)

CONCLUSION

Dr. Tao Zhu is a leading researcher in atmospheric environment management and air pollution control, making significant contributions through innovative plasma treatment technologies and catalysis research. His extensive academic and industrial experience has led to impactful environmental solutions, shaping policies and practices in pollution control. With numerous prestigious awards, over 100 research publications, and multiple patents, he continues to push the boundaries of environmental science. His pioneering work in ultra-high-temperature plasma gasification and hazardous waste management has established him as a key figure in sustainable environmental engineering.

WILLIAM GODDARD | CO2 reduction | Best Researcher Award

Prof. Dr WILLIAM GODDARD | CO2 reduction | Best Researcher Award

professor, California Institute of Technology, United States

William A. Goddard III is a distinguished scientist in theoretical chemistry and materials science. He earned his Ph.D. in Engineering Science from the California Institute of Technology (Caltech) in 1964 and has since been a leading figure in computational modeling and molecular simulations. He has held prestigious positions at Caltech, including the Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics. As the Director of the Materials and Process Simulation Center, his research has advanced fields such as catalysis, materials design, and molecular dynamics. With over 1,700 publications and more than 157,000 citations, he is recognized globally for his contributions to computational chemistry and materials innovation. His work spans quantum mechanics, force field development, and energy storage solutions.

PROFESSIONAL PROFILE

Orcid

Scopus

STRENGTHS FOR THE AWARD

  1. Academic Excellence:
    • Earned a Ph.D. in Engineering Science and Physics from Caltech (1964) and a B.S. in Engineering from UCLA (1960, Highest Honors).
    • Served as an Alfred A. Noyes Research Fellow of Chemistry at Caltech (1964-1966).
  2. Professional Leadership:
    • Holds the prestigious title of Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics at Caltech.
    • Director of the Materials and Process Simulation Center (MSC) since 1990.
    • Former Director of the NSF Grand Challenge Applications Group (1992-1997) and NSF Materials Research Group (1984-1990).
  3. Research Contributions and Impact:
    • Authored 1,728 research publications in high-impact journals.
    • Accumulated 157,281 citations, demonstrating widespread influence in scientific research.
    • Holds an h-index of 176, reflecting outstanding research impact.
  4. Pioneering Work in Computational Chemistry and Materials Science:
    • Developed ReaxFF, a widely used reactive force field for molecular simulations.
    • Advanced quantum mechanics-based force fields for chemical and materials simulations.
    • Made significant contributions to MOFs (Metal-Organic Frameworks) for CO₂ capture.
    • Pioneered research in electrocatalysts for water electrolysis, supercapacitor electrodes, and amorphous metal stability.
  5. Recognition and Influence in the Scientific Community:
    • Numerous collaborations, with 3,259 co-authors in multidisciplinary research.
    • Contributions to prestigious journals, including PNAS, ACS Applied Materials, and Journal of the American Chemical Society.

AREAS FOR IMPROVEMENT

  • Despite his extensive research portfolio, some recent works are in their early stages and lack citations due to their recency. However, given his past impact, these studies are likely to gain recognition over time.
  • While his primary focus has been on computational and materials chemistry, expanding his research into broader experimental validations could further strengthen his influence.

EDUCATION 🎓

  • Ph.D. in Engineering Science & Physics – California Institute of Technology, 1964
  • BS in Engineering (Highest Honors) – University of California, Los Angeles (UCLA), 1960
  • Alfred A. Noyes Research Fellow of Chemistry – Caltech, 1964-1966

EXPERIENCE 🏆

  • Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics – Caltech, 2001–present
  • Director, Materials and Process Simulation Center (MSC) – Caltech, 1990–present
  • Professor of Chemistry and Applied Physics – Caltech, 1978–2001
  • Director, NSF Materials Research Group at Caltech – 1984–1990
  • Director, NSF Grand Challenge Applications Group at Caltech – 1992–1997
  • Assistant, Associate, and Full Professor of Theoretical Chemistry – Caltech, 1967–1978

AWARDS & HONORS 🏅

  • Elected Member, National Academy of Sciences
  • Elected Member, American Academy of Arts and Sciences
  • ACS Award in Theoretical Chemistry
  • Materials Research Society Medal
  • IBM Research Partnership Award
  • Feynman Prize in Nanotechnology
  • Fellow of American Chemical Society (ACS) and American Physical Society (APS)

RESEARCH FOCUS 🔬

William A. Goddard III specializes in theoretical chemistry, materials science, and computational modeling. His work involves quantum mechanics, molecular simulations, and force field development for applications in catalysis, energy storage, and nanotechnology. He has pioneered reactive force fields (ReaxFF) and contributed to drug discovery, polymer design, and CO₂ capture. His interdisciplinary research integrates density functional theory (DFT), artificial intelligence, and high-performance computing to address global challenges in sustainable energy, advanced materials, and environmental solutions.

PUBLICATION TOP NOTES 📚

  • Eco-Friendly Synthesis and Morphology Control of MOF-74 for CO₂ Capture Performance – Separation and Purification Technology (2025)
  • Development of a ReaxFFNiAlRe Reactive Force Field for Ni-Based Superalloys – Acta Materialia (2025)
  • Environmentally Friendly Mixed-Metal MOF for CO₂ Capture – Chemical Engineering Journal (2025)
  • Phase Stability in Amorphous Metals vs. Crystalline Phases – PNAS (2025)
  • Nonprecious Triple-Atom Catalysts for Electrochemical Nitrate Reduction – ACS Applied Materials and Interfaces (2025)
  • Metabotropic GABAB Receptor Activation and G Protein Coupling – Journal of the American Chemical Society (2025)
  • Sacrificial MOF-Derived MnNi Hydroxide for Supercapacitor Electrodes – Heliyon (2025)
  • A General Nonbonded Force Field Based on Quantum Mechanics – Journal of Chemical Theory and Computation (2025)
  • Tantalum-Stabilized Ruthenium Oxide Electrocatalysts for Water Electrolysis – Journal of Bio-X Research (2025)
  • Controlling Electrochemical Interface Roughening with Temperature Gradients – Physical Review E (2025)

CONCLUSION

William A. Goddard III is an outstanding candidate for the Best Researcher Award due to his exceptional academic background, groundbreaking research, high citation impact, and leadership in computational chemistry and materials science. His contributions to force field development, material simulations, and sustainable energy solutions solidify his reputation as a leading scientist. His work continues to drive innovations in engineering and applied physics, making him a worthy recipient of this prestigious award.

Marzieh Farhadkhani | Environmental Health Engineering | Best Researcher Award

Dr Marzieh Farhadkhani | Environmental Health Engineering | Best Researcher Award

Assistant Professor, Shahrekord University of Medical Sciences, Iran

Marzieh Farhadkhani is an accomplished researcher affiliated with Shahrekord University of Medical Sciences in Iran. With a robust background in environmental health and public safety, she has made significant contributions to understanding pollution and its effects on human health. Her work spans various topics, including wastewater management and the impacts of environmental contaminants. With 22 published documents and over 376 citations, Farhadkhani is recognized for her dedication to advancing knowledge in her field, driven by a passion for improving public health and environmental sustainability.

Profile

SCOPUS

ORCID

Strengths for the Award

  1. Impactful Publications: Farhadkhani has authored 22 documents with 398 citations, showcasing her significant contributions to environmental health research.
  2. Diverse Research Topics: Her work covers critical areas such as wastewater management, pollution characterization, and health risk assessments, demonstrating versatility and relevance to current environmental issues.
  3. Collaborative Efforts: She has effectively collaborated with numerous co-authors, indicating her ability to work within interdisciplinary teams and enhance research output.
  4. Recognition and Influence: Farhadkhani’s research has been cited frequently, reflecting its influence on public health policies and environmental management practices in Iran and beyond.

Areas for Improvement

  1. Increasing H-index: Although her h-index is 10, which is respectable, striving to publish more frequently in high-impact journals could enhance her visibility and citation rates.
  2. Expanding Research Networks: Engaging in more international collaborations could broaden her research perspective and open new avenues for impactful studies.
  3. Public Engagement: While her academic contributions are commendable, increasing outreach efforts to communicate findings to the public could elevate awareness of environmental health issues.

Education

Farhadkhani holds a degree in Environmental Health Sciences, which laid the groundwork for her research endeavors. She further honed her expertise through advanced studies and hands-on experiences that focused on the intersection of health and environmental factors. Her educational journey has equipped her with the skills necessary to investigate complex environmental issues and contribute meaningfully to public health initiatives.

Experience

With several years of research experience, Farhadkhani has worked on numerous projects addressing environmental pollution and health risks in Iran. She has collaborated with various academic and governmental institutions, focusing on the analysis of contaminants and their implications for community health. Her role involves both conducting field studies and disseminating research findings through publications and presentations, contributing to the broader scientific community.

Awards and Honors

Farhadkhani has been recognized for her outstanding contributions to environmental health research. Among her accolades is the Extraordinary Master’s Prize from Shahrekord University, reflecting her exceptional academic performance and research output. Her work has not only garnered citations but also has been influential in shaping policies related to environmental health in her region.

Research Focus

Farhadkhani’s research primarily centers on the health impacts of environmental pollutants, including heavy metals and wastewater management. She investigates the ecological and human health risks associated with various contaminants and aims to develop effective strategies for risk mitigation. Her focus on public health implications of environmental issues highlights her commitment to fostering safer communities through scientific research.

Publication Top Notes

  1. Co-occurrence of polycyclic aromatic hydrocarbons and heavy metals in various environmental matrices of a chronic petroleum polluted region in Iran; Pollution characterization, and assessment of ecological and human health risks 🌍🔬
  2. Hair and urinary 2-hydroxynaphthalene levels in the people living in a region with frequent oil pipeline incidents in Iran: Health risk assessment 🛢️⚖️
  3. Corrigendum to “Wastewater surveillance of antibiotic resistance and class 1 integron-integrase genes” 🧬📝
  4. Wastewater surveillance of antibiotic resistance and class 1 integron-integrase genes: Potential impact of wastewater characteristics on genes profile 💧🔍
  5. Occurrence of Giardia and Cryptosporidium in effluents of urban wastewater treatment plants: A global systematic review and meta-analysis 🌎🦠
  6. A review on insights and lessons from COVID-19 to the prevent of monkeypox pandemic 🦠✈️
  7. Cryptosporidium’s burden of disease attributable to consumption of wastewater-irrigated raw vegetables 🥗⚠️
  8. TSP, PM10, PM2.5, and PM1 in ambient air of Shahr-e Kord, Iran’s rooftop; levels, characterisation and health risk assessment of particles-bound heavy metals 🌫️🏙️
  9. Simultaneous monitoring of SARS-CoV-2, bacteria, and fungi in indoor air of hospital: a study on Hajar Hospital in Shahrekord, Iran 🏥🦠
  10. The Effect of Wastewater Irrigation on the Activity of Soil Microorganisms 🌱💧

Conclusion

Marzieh Farhadkhani is a deserving candidate for the Research for Best Researcher Award due to her impactful research in environmental health, significant publication record, and collaborative approach. By focusing on enhancing her research output and engaging with broader audiences, she can further solidify her position as a leading researcher in her field. Her dedication to addressing environmental challenges through rigorous scientific inquiry makes her an exemplary candidate for recognition.

Priscila Guaygua-Amaguaña | Environmental Engineering | Best Researcher Award

Ms. Priscila Guaygua-Amaguaña | Environmental Engineering | Best Researcher Award

PhD student | Université de Toulouse | France

🧬 Short Bio

Priscila Guaygua is an accomplished chemist and researcher from Ecuador, currently pursuing her PhD in environmental impact assessment of bio-based materials and eco-design at Toulouse INP in France. With a rich background in chemical engineering and green chemistry, she has worked on various innovative projects, focusing on sustainable processes, environmental impact analysis, and life cycle assessment. Her research interests lie in the valorization of agricultural by-products and eco-friendly materials.

👤 Profile

Orcid

🎓 Education

Priscila’s academic journey is marked by her commitment to green chemistry and eco-friendly innovation. In 2023, she began her PhD at Toulouse INP, focusing on the comparative evaluation of environmental impacts of bio-based materials. She holds a Master of Science in Green Chemistry and Processes for Biomass from the Institut National Polytechnique de Toulouse (2019-2021), and a Chemical Engineering degree from École Nationale Polytechnique in Ecuador (2014-2019).

💼 Experience

  • 2024: Professeur de Chimie at Ipst-Cnam, Toulouse, France – Instructed students on chemical reactions, material quantification, aqueous solutions, and organic synthesis.
  • 2022: Ingénieure Projet Innovation et Environnemental at Veso Concept, Fontenilles, France – Conducted life cycle assessments, eco-design initiatives, and managed R&D projects with a focus on environmental impacts.
  • 2021: Research Assistant at Laboratoire de Génie Chimique, CNRS, Toulouse – Studied carbon dynamics in olive oil production using C-TOOL software.
  • 2020: Research Assistant at Laboratoire de Chimie Agro-industrielle, INRA, Toulouse – Analyzed life cycle of olive pomace for biocomposite production using SimaPro.
  • 2017: Research Assistant at Département de Métallurgie Extractive (DEMEX), EPN, Quito, Ecuador – Assisted in research on metallurgy.

🔬 Research Interest

Priscila’s research focuses on the life cycle assessment (LCA) of agricultural by-products, specifically olive pomace, and their integration into biocomposites. She is dedicated to developing sustainable materials and eco-friendly processes that reduce environmental impacts through innovative approaches in green chemistry and biomass valorization.

🏆 Awards

Priscila has been nominated for several awards in the field of environmental chemistry and eco-design due to her impactful contributions to green chemistry projects, but specific award details are not provided.

📚 Publications

  1. Espadas-Aldana, G., Guaygua-Amaguaña, P., Vialle, C., Belaud, J-P., Evon, P., Sablayrolles, C. (2021). Life Cycle Assessment of Olive Pomace as a Reinforcement in Polypropylene and Polyethylene Biocomposite Materials: A New Perspective for the Valorization of This Agricultural By-Product. Coatings, 11(5), 525. Link.
    Cited by 10 articles.
    Prompt: Life Cycle Assessment of Olive Pomace Biocomposites published in Coatings, 2021.

📝 Conclusion

Priscila Guaygua is a passionate advocate for green chemistry and sustainable material development. Through her research and professional endeavors, she continues to push the boundaries of eco-friendly innovations, contributing significantly to the advancement of environmentally conscious scientific practices.

Yichun Fan – Air pollution – Best Researcher Award 

Yichun Fan - Air pollution - Best Researcher Award 

Massachusetts Institute of Technology - United States

AUTHOR PROFILE

SCOPUS

RESEARCH INTERESTS

Yichun Fan is deeply engaged in the fields of Environmental Economics, Urban Economics, Behavioral Science, and Computational Social Science. Her research aims to understand the intricate connections between human behavior and environmental factors, particularly in urban settings.

PUBLICATIONS

Yichun has a rich portfolio of published works. Notable among them is her co-authored paper on intraday adaptation to extreme temperatures in outdoor activities published in Scientific Reports. Her collaborative research on global sentiment alterations during the COVID-19 pandemic featured in Nature Human Behaviour highlights her contributions to understanding human emotional responses during crises. Additionally, her work on encouraging economic activity post-COVID-19 was published in the Proceedings of the National Academy of Sciences. Other significant publications include studies on street pedestrianization, the impact of carbon markets on air pollution, and behavioral trade-offs in commuting choices in esteemed journals like Cities, Resources, Conservation and Recycling, Plos One, Environmental Research Letters, and Transportation Research Part A: Policy and Practice.

ONGOING PROJECTS

Yichun is actively involved in several ongoing projects. Her working papers include research on the social costs of lifestyle adaptation due to air pollution, determinants and interventions for physical activity during COVID-19, and the nonlinear effects of temperature on human sentiment. These projects, some of which are under review in leading journals like Nature Human Behavior and Journal of Environmental Economics and Management, reflect her continuous contribution to her field.

WORK IN PROGRESS

Yichun's current work in progress includes innovative studies on the financial impacts of climate infrastructure maintenance, social learning networks for climate risk adaptation, and the mental health benefits of vaccination. These projects involve collaboration with other prominent researchers, further showcasing her commitment to advancing knowledge in environmental and urban economics.

ACADEMIC ACHIEVEMENTS

Throughout her career, Yichun has received recognition for her exceptional research contributions. Her studies have been published in top-tier journals, and she has been invited to present her findings at various prestigious conferences. Her work has not only advanced academic understanding but also provided practical insights for policy-making and urban planning.

COLLABORATIVE NETWORK

Yichun's research is characterized by extensive collaboration with scholars from around the world. She has worked with experts from institutions in China, Spain, and the United States, among others. This global network has enriched her research, enabling her to address complex issues from diverse perspectives.

FUTURE DIRECTIONS

Looking ahead, Yichun aims to further explore the intersection of human behavior and environmental sustainability. Her future research will continue to focus on developing innovative solutions to urban and environmental challenges, leveraging computational social science methods to inform policy and drive positive change.

NOTABLE PUBLICATION

Intraday Adaptation to Extreme Temperatures in Outdoor Activity
Authors: Fan, Y., Wang, J., Obradovich, N., Zheng, S.
Year: 2023
Journal: Scientific Reports


Measuring Daily-Life Fear Perception Change: A Computational Study in the Context of COVID-19
Authors: Chai, Y., Palacios, J., Wang, J., Fan, Y., Zheng, S.
Year: 2022
Journal: PLoS ONE


Effect of Carbon Market on Air Pollution: Firm-Level Evidence in China
Authors: Zhu, J., Li, X., Fan, Y., Shi, H., Zhao, L.
Year: 2022


Global Evidence of Expressed Sentiment Alterations During the COVID-19 Pandemic
Authors: Wang, J., Fan, Y., Palacios, J., Zhou, C., Zheng, S.
Year: 2022
Journal: Nature Human Behaviour


Encouraging the Resumption of Economic Activity After COVID-19: Evidence from a Large Scale-Field Experiment in China
Authors: Palacios, J., Fan, Y., Yoeli, E., Rand, D.G., Zheng, S.
Year: 2022
Journal: Proceedings of the National Academy of Sciences of the United States of America

GUANGYAO FAN – Sustainable Development – Best Researcher Award

GUANGYAO FAN - Sustainable Development - Best Researcher Award

Shandong university - China

AUTHOR PROFILE

SCOPUS

RESEARCH FOCUS ON HYDROGEN-BASED MULTI-ENERGY SYSTEMS

GUANGYAO FAN is currently pursuing a PhD in Control Theory and Control Engineering at Shandong University. Their research interests primarily center around the intelligent optimization of hydrogen-based regional multi-energy systems and the hydrogen economy.

EDUCATIONAL JOURNEY

Prior to their doctoral studies, FAN completed an M.S. in Energy Power at North China Electric Power University (NCPU) from September 2020 to July 2023.

PUBLICATIONS AND RESEARCH CONTRIBUTIONS

FAN has made significant contributions to the field, publishing four SCI papers as first author or corresponding author. These publications include research on multi-time-space scale optimization for hydrogen-based regional multi-energy systems, collaborative optimization for renewable energy systems, energy management strategies for near-zero energy community energy supply systems, and multi-time scale operation optimization for community energy systems.

RESEARCH PUBLICATIONS

Notably, their papers have been published in high-impact journals such as Applied Energy, Energy, and Sustainable Cities and Society, showcasing their expertise in energy optimization and management.

ACADEMIC AFFILIATION

FAN is affiliated with the School of Control Science and Engineering at Shandong University, where they continue to advance research in the field of energy systems optimization.

CONTACT INFORMATION

For further inquiries, please contact GUANGYAO FAN via their academic institution at the School of Control Science and Engineering, Shandong University, China.

NOTABLE PUBLICATION

Multi-time-space scale optimization for a hydrogen-based regional multi-energy system

Adaptive energy optimization strategy of island renewable power-to-hydrogen system with hybrid electrolyzers structure 2024 (1)

Collaborative optimization method and energy-saving, carbon-abatement potential evaluation for nearly-zero energy community supply system with different scenarios 2023 (8)

Two-layer collaborative optimization for a renewable energy system combining electricity storage, hydrogen storage, and heat storage 2022 (24)

A novel distributed energy system combining hybrid energy storage and a multi-objective optimization method for nearly zero-energy communities and buildings 2022 (84)