Junsong Yang – Materials Science and Engineering – Best Researcher Award

Junsong Yang - Materials Science and Engineering - Best Researcher Award

Professor | Bengbu Medical University | China

Junsong Yang, affiliated with Bengbu Medical University in China, has established a solid research footprint with contributions that span advanced materials, nanotechnology, and photocatalysis. The profile records 22 publications that collectively garnered 66 citations, reflecting recognition from the scientific community and an h-index of 5, demonstrating both productivity and impact. The works highlight innovative approaches in material design, such as the preparation of Ti₃C₂/SA-TCPP composites through π–π interactions, which significantly improved hydrogen peroxide production and enabled efficient photocatalytic self-Fenton degradation of pollutants like 2,4-dichlorophenol, underscoring the environmental relevance of this research. Another notable study developed ratiometric FRET-encoded Zr-MOF@Au-FAM/TAMRA nanoassemblies integrated with tetrahedral framework nucleic acid-functionalized magnetic beads and DNA walkers, advancing ultrasensitive detection methods for antibiotics such as enrofloxacin and ciprofloxacin, indicating a strong interdisciplinary connection between chemistry, biotechnology, and environmental safety. The author’s research trajectory shows a consistent focus on combining functional nanomaterials with catalytic and sensing applications, addressing both energy conversion and pollution remediation challenges. Co-authorship with 55 collaborators reveals an extensive professional network, enhancing the interdisciplinary scope of the research. The publication record in high-impact journals, including Separation and Purification Technology and Chemical Engineering Journal, illustrates the quality and relevance of contributions in both applied and fundamental science. The consistent engagement with pressing global issues such as environmental pollution, sustainable chemical processes, and biomedical detection technologies positions the work as impactful and forward-looking. While awarded grants are not listed, the productivity and growing citation base suggest increasing recognition and potential for future funded projects. The scholarly activities demonstrate a balance between methodological innovation and practical application, making Junsong Yang’s contributions valuable for advancing modern chemical engineering and materials science, with clear implications for environmental sustainability, energy solutions, and public health monitoring.

Profile: Scopus 
Featured Publications:

Preparation of Ti3C2/SA-TCPP via π–π interaction for the enhanced production of H2O2 and the highly efficient photocatalytic-self-Fenton degradation of 2,4-dichlorophenol. (2025). Separation and Purification Technology.

Ratiometric FRET encoding Zr-MOF@Au-FAM/TAMRA nano assemblies based on tetrahedral framework nucleic acid-functionalized magnetic beads and DNA walker for ultrasensitive quantifying enrofloxacin and ciprofloxacin. (2025). Chemical Engineering Journal.

Jialin Liu – Materials Science and Engineering – Best Researcher Award

Jialin Liu - Materials Science and Engineering - Best Researcher Award

Southeast University - China

AUTHOR PROFILE

GOOGLE SCHOLAR

SCOPUS

🎓 SUMMARY

Jialin Liu is a leading researcher in the field of composite materials and structural engineering, with expertise extending from molecular dynamics to macro-scale simulations. A foundation in Naval Architecture and Ocean Engineering laid the groundwork for an impressive academic path that culminated in a Ph.D. from the City University of Hong Kong. The focus of research has consistently bridged theory, experiment, and application, earning recognition across high-impact journals. Through a career deeply rooted in materials science, Liu has demonstrated versatility in tackling real-world engineering challenges with scientifically rigorous solutions, leaving a mark in both academic and applied engineering communities.

🏫 EARLY ACADEMIC PURSUITS

Jialin Liu began academic exploration at the Huazhong University of Science and Technology, earning a B.S. and M.S. in Naval Architecture and Ocean Engineering. Early research included structural mechanics and composite design, highlighting potential for innovation in sandwich structures and Y-shaped core panels. These formative years provided essential hands-on exposure to mechanical testing and material characterization. Driven by curiosity and academic rigor, Liu expanded knowledge through detailed analysis of failure mechanisms and novel fabrication techniques. This period laid the technical and conceptual foundation required for subsequent interdisciplinary research in civil engineering, nanomaterials, and sustainable infrastructure systems.

🏗️ PROFESSIONAL ENDEAVORS IN STRUCTURAL INNOVATION

Following the master's degree, Jialin Liu pursued a Ph.D. at the City University of Hong Kong under the mentorship of Denvid Lau. Research during this period integrated multiscale modeling and experimentation, focusing on cementitious composites and nanomaterial reinforcements. Collaborations with international scholars and contributions to advanced materials journals demonstrate professional dedication. Liu’s engagement in projects involving boron nitride nanosheets, FRP-reinforced concrete, and geopolymer composites reveals a consistent drive to address structural integrity and durability under complex conditions. The academic career continues at Southeast University, where ongoing contributions enrich the Department of Civil and Architectural Engineering with both teaching and research.

🧪 CONTRIBUTIONS AND RESEARCH FOCUS

Jialin Liu’s research primarily investigates the mechanical behavior of composite structures under varied loading conditions, integrating nanoscale and macro-scale analysis. Key focus areas include boron nitride nanosheet-reinforced cement, self-healing composites, and FRP materials under thermal and moisture-induced stresses. Liu applies a combination of experimental, theoretical, and computational tools, including molecular dynamics simulations and finite element analysis. Several papers as corresponding author reflect leadership in the field. By innovating in sustainable building materials and developing methods to enhance structural resilience, Liu contributes significantly to material science, structural engineering, and environmental sustainability with high relevance to modern infrastructure challenges.

🏅 ACCOLADES AND RECOGNITION

With over 20 peer-reviewed publications in prestigious journals such as Applied Surface Science, Materials and Design, and Composites Science and Technology, Jialin Liu’s academic excellence has received global recognition. Multiple first-author and corresponding-author papers underscore independent contribution and leadership in scientific discovery. Collaboration with esteemed researchers including Denvid Lau and Jiayi Liu signals recognition from established academic circles. Many studies have been published in Q1 journals, highlighting the impactful and innovative nature of the research. The ability to publish across interdisciplinary domains—from nanotechnology to structural composites—demonstrates a rare versatility that is widely acknowledged within the scientific and engineering communities.

🌍 IMPACT AND INFLUENCE IN ENGINEERING SCIENCE

Jialin Liu’s work holds transformative potential for future construction practices, especially in enhancing material performance under harsh environmental conditions. By combining nanoscale innovations with structural modeling, Liu advances both scientific knowledge and practical solutions for sustainable infrastructure. Research on moisture resistance, high-temperature tolerance, and self-healing materials aligns well with global climate resilience goals. Findings have informed developments in structural health monitoring and retrofitting practices, offering new paths to prolong infrastructure lifespan. Liu’s interdisciplinary contributions influence peers, policy thinkers, and industry professionals aiming to create safer, smarter, and more durable engineering systems that respond to evolving societal needs.

📘 LEGACY AND FUTURE CONTRIBUTIONS

As a scholar whose work bridges civil engineering, nanotechnology, and material science, Jialin Liu is poised to shape future generations of research and innovation. Current studies on intelligent materials, thermal performance, and composite interfaces suggest a forward-looking vision that addresses both engineering efficiency and environmental responsibility. The legacy is not only in publications but in establishing frameworks that others can build upon. Liu is expected to continue exploring interdisciplinary domains, possibly integrating AI-driven structural diagnostics and data-enhanced modeling. With a clear trajectory of impactful research, Liu’s future contributions will likely redefine boundaries in civil materials and sustainable infrastructure design.

PUBLICATION

Title: Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores
Authors: J. Liu, J. Liu, J. Mei, W. Huang
Journal: Composites Science and Technology, 159, 87–102, 2018


Title: A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel
Authors: J. Mei, J. Liu, J. Liu
Journal: Composites Part A: Applied Science and Manufacturing, 102, 28–39, 2017


Title: Two-dimensional nanomaterial-based polymer composites: Fundamentals and applications
Authors: J. Liu, D. Hui, D. Lau
Journal: Nanotechnology Reviews, 11(1), 770–792, 2022


Title: Mechanical response of a novel composite Y-frame core sandwich panel under shear loading
Authors: J. Liu, T. Zhang, W. Jiang, J. Liu
Journal: Composite Structures, 224, 111064, 2019


Title: Bending response and failure mechanism of composite sandwich panel with Y-frame core
Authors: J. Liu, Z. He, J. Liu, W. Huang
Journal: Thin-Walled Structures, 145, 106387, 2019


Title: Temperature effects on the compressive properties and failure mechanisms of composite sandwich panel with Y-shaped cores
Authors: J. Zhou, Y. Wang, J. Liu, J. Liu, J. Mei, W. Huang, Y. Tang
Journal: Composites Part A: Applied Science and Manufacturing, 114, 72–85, 2018

Wioletta Raczkiewicz – Materials Science and Engineering – Best Researcher Award

Wioletta Raczkiewicz - Materials Science and Engineering - Best Researcher Award

Kielce University of Technology - Poland

AUTHOR PROFILE

SCOPUS
GOOGLE SCHOLAR
ORCID

SUMMARY

Wioletta Raczkiewicz is a civil engineering expert with extensive academic and professional engagement in concrete structures, building renovation, and historic building conservation. With nearly three decades of involvement in technical education and structural research, the profile is marked by progressive academic roles at Kielce University of Technology. Key contributions include the development of stochastic models for fiber-reinforced concrete and ongoing dedication to educational and architectural engineering excellence. Current responsibilities as Associate Professor include teaching, mentoring, and research leadership in advanced concrete technologies and structural diagnostics.

EDUCATION

Earned a Master of Engineering in Civil Engineering in 1994 from Kielce University of Technology, with a specialization in Building Renovations and Historic Conservation. The thesis focused on adaptive reconstruction of Villa Zielona into a guesthouse. In 2008, completed a Doctor of Technical Sciences degree in Civil Engineering, specializing in Concrete Structures. The doctoral dissertation investigated stochastic parameter distributions in fiber-reinforced concrete under variable loading, reflecting a high level of analytical and modeling capability within modern structural engineering contexts.

PROFESSIONAL EXPERIENCE

Began professional career in 1995 at the Research Institute of Roads and Bridges in Warsaw, Kielce branch, as a technologist. Continued academic work at Kielce University of Technology from 1997 onward across multiple faculty transformations, evolving from early technical roles to current designation as Associate Professor since December 2023. Over the years, responsibilities have included curriculum development, scientific research, and faculty service. Academic progression reflects long-term contributions in concrete technology, civil infrastructure diagnostics, and the integration of historic and modern construction methods.

RESEARCH INTEREST

Focus areas include fiber-reinforced concrete behavior under variable loads, stochastic modeling in structural engineering, diagnostics of construction materials, and conservation technologies for historical buildings. Interested in the development of innovative rehabilitation solutions and structural assessments through computational and empirical approaches. Emphasizes interdisciplinary integration between modern construction science and architectural heritage preservation. Research aims at improving reliability and sustainability of concrete structures while advancing methodologies in structural health monitoring and damage prediction under real-world operational conditions.

AWARD AND HONOR

Recognized within institutional settings for consistent academic performance and contributions to structural engineering research. While no international honors are explicitly listed, appointment to Associate Professor reflects institutional acknowledgment of scholarly merit and educational impact. Continued involvement in faculty development and mentoring underscores professional credibility and recognition within the academic engineering community. Contributions to doctoral supervision and peer-reviewed scientific work further illustrate recognition and trust in research excellence and educational leadership in civil engineering.

RESEARCH SKILL

Possesses advanced capabilities in stochastic modeling, finite element analysis, material diagnostics, and structural assessment techniques. Proficient in the application of probabilistic methods to evaluate concrete behavior under stress conditions. Skilled in developing interdisciplinary projects involving historic building technologies and sustainable construction practices. Demonstrates technical proficiency in laboratory methods for testing fiber-reinforced composites and interpreting complex data sets for real-world engineering applications. Also experienced in supervising engineering theses and managing collaborative academic research projects with a focus on reliability and material performance.

PUBLICATIONS TOP NOTED

Authored several technical publications in the field of concrete structures and structural modeling. Focus areas in these works include reliability assessment of fiber-reinforced materials and diagnostic techniques in civil engineering structures. Publications contribute to ongoing discourse in probabilistic evaluation of construction materials and are regularly cited within specialized journals of civil engineering and materials science. Key works also address structural behavior under dynamic and cyclic loads, further emphasizing expertise in advanced analysis of concrete and historical restoration frameworks.

Title: Reinforcement corrosion testing in concrete and fiber reinforced concrete specimens exposed to aggressive external factors
Authors: W. Raczkiewicz, M. Bacharz, K. Bacharz, M. Teodorczyk
Journal: Materials

Title: Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies
Authors: A. Czajkowska, W. Raczkiewicz, M. Ingaldi
Journal: Production Engineering Archives

Title: Innovative strengthening of RC columns using a layer of a fibre reinforced concrete
Authors: P. Koteš, M. Vavruš, W. Raczkiewicz
Journal: Acta Polytechnica CTU Proceedings

Title: Temperature impact on the assessment of reinforcement corrosion risk in concrete by galvanostatic pulse method
Authors: W. Raczkiewicz, A. Wojcicki
Journal: Applied Sciences

Title: Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes
Author: W. Raczkiewicz
Journal: Science and Engineering of Composite Materials

CONCLUSION

Wioletta Raczkiewicz exemplifies scholarly excellence in civil engineering, particularly in structural analysis and building conservation. The academic and research trajectory demonstrates a commitment to combining theoretical modeling with practical engineering applications. Contributions to educational development, research innovation, and technical diagnostics reinforce a leadership position within the field. With a stable academic tenure and impactful scientific output, the profile remains a valuable asset to structural engineering advancement, especially in concrete technologies and heritage restoration methodologies.