Kezhen Yan | Pavement | Best Researcher Award

Prof Kezhen Yan | Pavement | Best Researcher Award

HUNAN UNINVERSITY, China

Yan Kezhen is a distinguished Professor in the School of Civil Engineering at Hunan University, specializing in pavement engineering and materials. With a Ph.D. in Civil Engineering from Zhejiang University, he has over two decades of experience in research and academia. His work focuses on the structural mechanics of pavements, dynamic response analysis, and innovative materials for road construction. Prof. Yan has led numerous national and international research projects, including studies funded by the Natural Science Foundation of China and the China Postdoctoral Fund. He has published extensively in top-tier journals, contributing significantly to the fields of geotechnical and pavement engineering. His research has practical applications in road maintenance, subgrade stability, and sustainable construction practices. Prof. Yan is also an active mentor, guiding students and young researchers in advancing civil engineering technologies.

Professional Profile

Google Scholar

Education 🎓

  • Doctor of Engineering in Civil Engineering (Geotechnical Engineering), Zhejiang University, China (2002–2005).
  • Master of Engineering in Highways and Railway Engineering, Chang’an University, China (1999–2002).
  • Bachelor of Engineering in Civil Engineering, Shenyang Jianzhu University, China (1995–1999).

Prof. Yan’s academic journey reflects a strong foundation in civil engineering, with a focus on geotechnical and pavement engineering. His doctoral research at Zhejiang University laid the groundwork for his expertise in soil mechanics and pavement dynamics. His master’s studies at Chang’an University honed his skills in highway engineering, while his bachelor’s degree provided a comprehensive understanding of civil engineering principles. This robust educational background has enabled him to excel in both research and teaching, making significant contributions to the field.

Experience  💼

  • Professor, School of Civil Engineering, Hunan University (Present).
  • Researcher, Key Laboratory of Ministry Open Fund Projects (2007–2010).
  • Postdoctoral Researcher, China Postdoctoral Fund Projects (2008–2010).
  • Consultant, First Highway Consultants Co., LTD, China (2007–2009).

Prof. Yan has extensive experience in leading high-impact research projects, including studies on pavement mechanics, subgrade stability, and sustainable road construction. His work with the China Postdoctoral Fund and the Natural Science Foundation of China has advanced the understanding of pavement dynamics and material behavior. Additionally, his consultancy role with the First Highway Consultants Co., LTD, contributed to practical solutions for highway construction in challenging environments like permafrost regions. His expertise bridges theoretical research and real-world applications, making him a leader in civil engineering.

Awards and Honors 🏆

  • Outstanding Researcher Award, Hunan University (2010).
  • Best Paper Award, Geohunan International Conference (2009).
  • Key Project Science Fund Recipient, Hunan University (2010–2012).
  • Postdoctoral Special Funding, China Postdoctoral Fund (2009–2010).
  • New Teachers’ Fund for Doctor Stations, Ministry of Education of China (2009–2011).

Prof. Yan’s contributions to pavement engineering and materials have been recognized through numerous awards and honors. His research on pavement mechanics and subgrade stability has earned him accolades from both academic and industry circles. The Key Project Science Fund and Postdoctoral Special Funding highlight his innovative approach to solving complex engineering problems. His work continues to set benchmarks in the field, earning him a reputation as a leading expert in civil engineering.

Research Focus 🔍

Prof. Yan’s research focuses on pavement engineeringmaterial science, and geotechnical engineering. His work includes:

  • Pavement Mechanics: Analyzing the structural behavior of gradient heterogeneity pavements and dynamic responses to traffic loads.
  • Material Innovation: Developing sustainable materials like waste tire rubber and recycled polyethylene for asphalt modification.
  • Subgrade Stability: Studying erosion mechanisms and stability of highway subgrade slopes.
  • Maintenance Technologies: Evaluating pavement performance and decision-making methods for maintenance.
  • Dynamic Load Analysis: Investigating the impact of uneven pavement surfaces on fatigue breakdown.

His research combines theoretical modeling with experimental validation, providing practical solutions for road construction and maintenance. Prof. Yan’s work has significant implications for improving the durability and sustainability of transportation infrastructure.

Publication Top Notes 📚

  1. Study on settlement patterns of embankment on soft ground of alluvial flat.
  2. Propagation of Rayleigh wave in saturated soil layer.
  3. Study on relationship of shear wave velocity and shear strength of foundation.
  4. Characteristics of Rayleigh wave in soils generated by traffic load.
  5. Propagation characteristics of Love wave generated by vehicle loads in soils.
  6. Dynamic response of rectangular plate lying on viscous Winkler foundation to moving harmonic load.
  7. Dynamic response analysis of slab on elastic foundation subjected to moving load.
  8. Dynamic response of strip on two-parameter viscoelastic foundation under impact loading.
  9. Transient Response of a Winkler Supported Plate.
  10. Experimental study of the rigid-flexible pile composite foundation.
  11. Transient response of a viscoelastic winkler supported strip.
  12. Dynamic response of rectangular plate on two-parameter foundation to moving load.
  13. Application Study on Rayleigh wave for Dry Jet Mixing Pile Composite Foundation.
  14. Dynamic Analysis of Beam Subjected to Moving Load on VLAZOV subgrade.
  15. Research on identification and classification method for swelling soil subgrade filling.
  16. Experimental Analysis on Asphalt Pavement Structure.
  17. Dynamic response of plate on Kelvin foundation subjected to moving load.
  18. Analysis on bituminous pavement structural mechanics based on change of gradient of module.
  19. Analysis on natural aging of bituminous pavement.
  20. Theoretical study on shear wave velocity and consolidation degree of soft soil Inundation.
  21. Multi Grey Synthetic Evaluation on Pavement Condition Of Asphalt Pavement.
  22. Evaluation of Pavement Dilapidation in Permafrost Region Based on Matter-Element Model.
  23. Effect of Bond Condition on Overlay Performance.
  24. Discriminant analysis model for prediction of sand soil liquefaction during earthquake.
  25. A Method of Asphalt Pavement Performance Evaluation Based on POS-LSSVM.
  26. Evaluation of Rock Slope Stability Based on Fisher Discriminant Analysis Method.
  27. Analysis of Thermal and Coupled-filed Stresses of Overlay on the Old Asphalt Pavements.
  28. Grey Relation Analysis of Low-temperature Performance Indexs of Asphalt Binder.
  29. Stress Analysis of Asphalt Overlay on Old Asphalt Pavement with Anti-cracking Interlayer Containing Stress absorption layer.
  30. Back-calculation of Modulus for Pavements Based on Ant Colony Algorithm.
  31. Application of Matter Element Analysis Based on Entropy Right to Evaluate the Pavement Condition in Permafrost Region.
  32. Prediction of elastic modulus of normal and high strength concrete by support vector machine.
  33. Multi-attribute grey fuzzy decision-making of asphalt pavement maintenance method.
  34. Mechanics analysis of asphalt overlay pavement under traffic load.
  35. Study on the roadbed slope erosion stability based on the theory of mutations.
  36. Study on mechanical behavior of asphalt concrete pavements with non-uniformity gradient materials.

Conclusion

Prof. Yan Kezhen is a leading figure in pavement and geotechnical engineering, with a career marked by groundbreaking research, innovative solutions, and a commitment to advancing sustainable infrastructure. His extensive publications, numerous awards, and impactful projects underscore his contributions to the field. Through his work, Prof. Yan continues to shape the future of civil engineering, ensuring safer, more durable, and environmentally friendly transportation systems.

 

SunJae Yoo | Concrete Structure | Best Scholar Award

Dr SunJae Yoo | Concrete Structure | Best Scholar Award

Postdoctoral Researcher, Korea University, South Korea

Dr. Yoo Sun-Jae is a dedicated researcher specializing in advanced materials and structural engineering, particularly focusing on carbon fiber-reinforced polymer (CFRP) bars, ultra-high-performance fiber-reinforced concrete (UHPFRC), and fire-resistant concrete structures. With a Ph.D. from Korea University, his work explores bonding behaviors, impact resistance, and fire-damaged concrete rehabilitation. Dr. Yoo has contributed significantly to the development of lightweight high-strength concrete using nanotechnology and innovative shelter-in-place (SIP) infrastructure. His research combines experimental and analytical approaches to advance sustainable and resilient construction technologies. Recognized for his excellence, he has received awards such as the Best Poster Award from the Korean Society of Civil Engineers and the Best Paper Award from the Journal of the Korean Society of Hazard Mitigation. Dr. Yoo is also an active contributor to international conferences and holds patents for concrete reinforcement technologies.

Professional Profile

Google Scholar

Education 🎓

Dr. Yoo Sun-Jae earned his Bachelor’s (2019), Master’s (2021), and Ph.D. (2025) in Civil Engineering from Korea University, Seoul, Republic of Korea. His Ph.D. dissertation focused on the bond performance of ribbed CFRP bars in UHPFRC after exposure to elevated temperatures, achieving a GPA of 4.23/4.50. During his Master’s, he investigated strengthening methods for two-way slabs under low-velocity impact loading, graduating with a GPA of 3.85/4.50. His academic journey reflects a strong foundation in structural engineering, reinforced by his advisor, Professor Young Soo Yoon. Dr. Yoo’s education has equipped him with expertise in advanced materials, concrete behavior, and innovative construction techniques.

Experience 🔧

Dr. Yoo Sun-Jae has extensive research experience, including projects funded by the National Research Foundation of Korea (NRF) and the Korea Agency for Infrastructure Technology Advancement. His work spans the development of smart strengthening techniques for fire-damaged concrete structures, CFRP reinforcements with zero corrosion, and lightweight high-strength concrete using nanotechnology. He has also contributed to the development of SIP infrastructure and DfMA-based modules for curved bridges. Dr. Yoo’s hands-on experience includes experimental analysis, material development, and structural optimization, making him a versatile researcher in civil engineering and construction materials.

Awards and Honors 🏆

Dr. Yoo Sun-Jae has been recognized for his outstanding contributions to civil engineering. In 2023, he received the Best Poster Award from the Korean Society of Civil Engineers. Earlier, in 2021, he was honored with the Best Paper Award from the Journal of the Korean Society of Hazard Mitigation. His academic excellence was acknowledged in 2018 with the Academic Achievement Excellence Award from Korea University. These accolades highlight his dedication to advancing research in structural engineering and innovative construction materials.

Research Focus 🔍

Dr. Yoo Sun-Jae’s research focuses on the bonding behavior of CFRP bars in UHPFRC, particularly under elevated temperatures and fire conditions. He investigates the impact resistance, fire resistance, and development length of concrete structures reinforced with advanced materials. His work also includes the development of lightweight high-strength concrete using carbon nanotubes (CNTs) and the optimization of SIP infrastructure. Dr. Yoo’s research integrates experimental and analytical approaches to enhance the durability, safety, and sustainability of modern construction materials and techniques.

Publication Top Notes 📚

  1. Flexural behavior of ribbed CFRP bars in UHPFRC beams with lap-splice connection.
  2. Degradation of flexural bond of CFRP bar in UHPFRC after exposure to elevated temperature.
  3. Reinforcing effect of CNT on the microstructure and creep properties of high-strength lightweight concrete.
  4. Flexural bond behavior and development length of ribbed CFRP bars in UHPFRC.
  5. Structural benefits of using carbon nanotube reinforced high-strength lightweight concrete beams.
  6. Bonding behavior and prediction of helically ribbed CFRP bar embedded in UHPC.
  7. Comparative bond-slip response of ribbed CFRP bar to UHPC after exposure to high temperature.
  8. Evaluation of residual bond behavior of CFRP and steel bars embedded in UHPC after elevated temperature.
  9. Effect of design code and evacuation information on strategic location of SIP in light rail stations.
  10. Effect of strengthening methods on two-way slab under low-velocity impact loading.
  11. Effect of internal curing on shrinkage and creep of self-compacting lightweight concrete.
  12. Post-heating flexural performance of UHPFRC members reinforced with ribbed CFRP bar.
  13. Influence of elevated temperature on the flexural behavior of spliced CFRP bars in UHPFRC beams.

Conclusion 🌟

Dr. Yoo Sun-Jae is a highly accomplished researcher whose work in CFRP bars, UHPFRC, and fire-resistant concrete structures has significantly advanced the field of civil engineering. His innovative approaches to material development and structural optimization have earned him numerous accolades and patents. Through his research, Dr. Yoo continues to contribute to the development of sustainable, resilient, and high-performance construction technologies, ensuring safer and more durable infrastructure for the future.

Alireza Rezaeian | Seismic Design | Best Researcher Award

Dr Alireza Rezaeian | Seismic Design | Best Researcher Award

CEO, sazaninc, Canada

Dr. Alireza Rezaeian is a highly accomplished Structural Civil Engineer with a Ph.D. from Iran University of Science & Technology (IUST). With over two decades of experience, he has worked on diverse projects across Iran, Canada, and the USA. His expertise spans the design and analysis of concrete, steel, and wood structures, as well as seismic behavior and finite element modeling. Dr. Rezaeian has held key roles in engineering firms, including SAZAN Inc., NCK Engineering, and MOGHAVEM SHAHR, where he led structural design teams. His research focuses on seismic performance, moment connections, and energy dissipation in steel structures. He is a published author with numerous citations in reputable journals.

Professional Profile

Google Scholar

Scopus

Education 🎓

Dr. Rezaeian holds a Ph.D. (2010) and an M.Sc. (2002) in Structural Civil Engineering from Iran University of Science & Technology (IUST), Tehran, Iran. He earned his B.Sc. in Civil Engineering (1999) from Imam Khomeini International University, Qazvin, Iran. His academic background laid the foundation for his expertise in structural analysis, seismic design, and finite element modeling.

Experience 💼

Dr. Rezaeian has over 20 years of experience in structural engineering. He has worked with firms like SAZAN Inc., NCK Engineering, and TEG Structures in Canada, focusing on the design and analysis of concrete, steel, and wood structures. In Iran, he served as the Head of the Structural Design Department at MOGHAVEM SHAHR, managing large-scale projects and leading design teams. His roles included reviewing shop drawings, conducting site visits, and coordinating with architects and contractors.

Awards and Honors 🏆

While specific awards are not listed, Dr. Rezaeian’s contributions to structural engineering are evident through his extensive research publications and leadership roles in major engineering projects. His work on seismic behavior and steel structures has been widely cited, reflecting his impact on the field.

Research Focus 🔬

Dr. Rezaeian’s research focuses on the seismic performance of steel structures, including eccentrically braced frames, moment connections, and energy dissipation systems. He has extensively studied the cyclic behavior of composite vertical shear links, panel zones, and ConXL moment connections. His work combines experimental and numerical analyses to optimize structural performance under seismic loads.

Publication Top Notes 📚

  1. Experimental study of cyclic behavior of composite vertical shear link in eccentrically braced frames
  2. Seismic behavior of ConXL rigid connection in box-columns not filled with concrete
  3. Experimental investigation of panel zone in rigid beam to box column connection
  4. Seismic performance of eccentrically braced frame with vertical link using PBPD method
  5. Numerical study of panel zone in a moment connection without continuity plates
  6. Assessment of the seismic behavior of eccentrically braced frame with double vertical link (DV-EBF)
  7. The experimental study of eccentrically braced frames with double vertical links
  8. Investigation of the ConXL moment connection cyclic behavior in box columns without filling concrete with different arrangement of collar bolts
  9. Deviation from target debt ratio, cash flow imbalance and capital structure adjustment
  10. Evaluation of damage index of steel moment resistance frames before and after seismic rehabilitation by steel braces and shear wall
  11. Evaluation of steel plate shear walls based on performance based plastic design
  12. Optimal design of eccentrically braced frames with vertical link (V-EBFs) in order to maximize energy dissipation
  13. Seismic behavior of eccentrically braced frames with composite vertical shear link (CV-EBFs)
  14. Test program on stiffened column bases subjected to cyclic loading
  15. Evaluation of non-linear cyclic behavior of CONXL moment connection with different detail in the column and optimizing the arrangement of bolts
  16. Improvement of seismic behavior of concentrically braced frames making use of fuse elements in brace members
  17. Experimental and Analytical Observations of the Effect of Leveling Nuts on the Stiffened Column Bases Behavior
  18. The influence of national and patriotic Persian epic in the Poetry of Iqbal Lahori
  19. EVALUATION OF DIRECT ANALYSIS METHOD ON HEAVY OIL STRUCTURES BY INCREMENTAL DYNAMIC ANALYSIS

Conclusion 🌟

Dr. Alireza Rezaeian is a distinguished structural engineer with a strong academic background and extensive professional experience. His contributions to seismic design and steel structures have advanced the field, as evidenced by his numerous publications and leadership roles. His work continues to influence both research and practical applications in structural engineering.

Binqi Xiao | Seismic Isolation of High-speed Railway Bridge | Best Researcher Award

Dr Binqi Xiao | Seismic Isolation of High-speed Railway Bridge | Best Researcher Award

Central South University, China

Binqi Xiao is a doctoral candidate in Civil Engineering at Central South University (CSU), specializing in Bridge Engineering. With a strong foundation in engineering mechanics, Xiao has demonstrated academic excellence, ranking first in their undergraduate program. Their research interests include structural dynamics, seismic isolation systems, and high-speed railway bridge damage control. Xiao has contributed to impactful research projects funded by prestigious national foundations and has authored multiple peer-reviewed articles in high-impact journals.

PROFESSIONAL PROFILE

Scopus

STRENGTHS  FOR THE AWARDS

  1. Exceptional Academic Performance:
    • Consistent excellence during undergraduate and doctoral studies at Central South University, one of China’s top institutions.
    • Ranked first in major during undergraduate studies, with an outstanding GPA of 90.11/100.
  2. Research Contributions:
    • Active participation in multiple high-impact projects funded by prestigious organizations such as the National Natural Science Foundations of China.
    • Key focus areas include structural dynamics, seismic isolation systems, and damage control for high-speed railway bridge systems.
    • Published extensively, with 9 documents cited 86 times, demonstrating significant influence in the field.
  3. Practical Impact of Research:
    • Focus on critical infrastructure resilience, such as high-speed railway bridges, under seismic effects.
    • Contributions to seismic isolation strategies and advanced bearing systems ensure real-world applicability and potential societal benefits.
  4. Recognition and Awards:
    • Recipient of multiple scholarships and accolades, such as the National Scholarship of China and the “Xu Zhilun Mechanics Outstanding Student” Award.
    • Recognized as an “Outstanding Student” and selected for Central South University’s “Bachelor – PhD” top innovative talent training program.
  5. Collaborative Efforts:
    • Collaborated with renowned researchers and institutions, contributing to a diversified research environment.
    • Engagement in interdisciplinary projects, such as friction coupling mechanisms and seismic damping systems.

AREAS FOR IMPROVEMENT

  1. Broader International Collaboration:
    • Expanding collaborations with international research teams could enhance global visibility and impact.
  2. Enhanced Outreach:
    • Participating in global conferences and presenting findings could strengthen professional networks and attract further funding opportunities.
  3. Diversity of Research Topics:
    • While the focus on seismic resilience is commendable, diversifying research into other pressing areas in civil engineering could broaden expertise and recognition.

EDUCATION

🎓 Ph.D. in Civil Engineering, Central South University (2021 – Present)

  • Specialization: Bridge Engineering
  • GPA: 3.64/4.0
  • Focus: Structural dynamics, seismic isolation systems, high-speed railway bridges

🎓 Bachelor of Engineering in Engineering Mechanics, Central South University (2017 – 2021)

  • GPA: 90.11/100 (Rank 1/52)
  • Key Courses: Mechanics of Materials (98), Fluid Mechanics (94), Structural Mechanics (93), Finite Element Method (94), and Bridge Vibration (94)

EXPERIENCE

💼 Research Assistant, Central South University

  • Participated in national projects on seismic response and isolation systems for railway bridges.
  • Developed numerical analysis methods for damage control in bridge systems under near-fault earthquakes.

📊 Project Leader

  • Graduate Innovation Project (2023-2026): Investigating track-bridge system damage response under seismic effects.

HONORS AND AWARDS

🏅 National Scholarship of China (2018-2019)
🏆 National “Xu Zhilun Mechanics Outstanding Student” Award (2020)
🎖️ First-Class Scholarships (2018-2020)
🥇 First Prize in Structural Design Competition (2019)
🌟 Outstanding Graduate, Central South University (2021)

RESEARCH FOCUS

🔍 Structural Dynamics: Numerical analysis and optimization of high-speed railway bridge systems.
🌐 Seismic Isolation Systems: Development and application of adaptive friction pendulum bearings.
🛤️ Damage Control: Strategies for track-bridge resilience under near-fault earthquakes.

PUBLICATION TOP NOTES

📖 Research on modeling method for connectors in the train-track-bridge system based on multi-timestep explicit-implicit co-simulation
📖 Energy response analysis and seismic isolation strategy optimization of high-speed railway bridge-track system under earthquake action
📖 Influence of pier height and ground motion parameters on seismic response and energy dissipation of isolated railway bridges
📖 Seismic displacement response analysis of Friction Pendulum Bearing under friction coupling and collision effects
📖 Effect of Subsequent Subgrade on Seismic Response of the High-Speed Railway Track–Bridge System
📖 Simplified design theory of variable curvature friction pendulum bearing with adaptive capability and its application in railway bridge
📖 Shaking table test of the seismic performance for railway simply-supported girder bridge isolated by self-centering bearing
📖 Damage control analysis of components in high-speed railway bridge-track system based on combined seismic isolation design under earthquake
📖 Effect of simulation accuracy of shear keys shear state on seismic response of friction pendulum bearing

CONCLUSION

Xiao Binqi is a highly suitable candidate for the Best Researcher Award due to his exceptional academic background, impactful research contributions, and recognition by peers and institutions. His work addresses critical challenges in civil engineering, particularly in high-speed railway infrastructure and seismic resilience, making significant advancements with real-world implications. While there is room for enhanced international collaboration and outreach, his achievements demonstrate a strong foundation for continued success and innovation in the field.

Mohamed Almansour – Transportation Engineering – Best Researcher Award

Mohamed Almansour - Transportation Engineering - Best Researcher Award

University of Missouri-Columbia - United States

AUTHOR PROFILE

Scopus

EARLY ACADEMIC PURSUITS

Mohamed Almansour began his academic journey at Alexandria University, where he earned his Bachelor's degree in Computer and Systems Engineering with a thesis focused on predicting sub-populations using Single-Nucleotide Polymorphisms (SNPs). He continued his education at the University of Missouri, obtaining a Master's degree in Computer Science with a specialization in AI and Machine Learning.

PROFESSIONAL ENDEAVORS

Mohamed's professional experience spans various domains, including academia and industry. He served as an Instructor at Alexandria University, where he taught courses in programming, data structures, statistics for computing, and digital logic design. Additionally, he worked as a Graduate Fellow at the University of Missouri, conducting research in computer vision, deep learning, and medical imaging. He also gained industry experience as a Software Engineer at Bloomberg LP and Siemens Healthcare.

CONTRIBUTIONS AND RESEARCH FOCUS

Mohamed's research primarily focuses on computer vision, deep learning, and medical image analysis. He has contributed to several publications and conferences, addressing topics such as high-resolution MRI brain inpainting, transportation mode choice models, and neonatal HIE segmentation. His work demonstrates a commitment to advancing knowledge and solving real-world problems in these fields.

IMPACT AND INFLUENCE

Through his research and professional endeavors, Mohamed has made a significant impact on the academic and industrial communities. His contributions to the BONBID-HIE Lesion Segmentation Challenge, where he ranked first, highlight his expertise and influence in the field of medical imaging analysis.

ACADEMIC CITES

Mohamed's publications have been well-received in the academic community, with citations in prominent conferences and journals. His research output underscores the relevance and significance of his work in areas such as biomedical informatics and transportation engineering.

LEGACY AND FUTURE CONTRIBUTIONS

As Mohamed continues his academic and professional journey, his legacy in computer science and engineering is poised to grow. His future contributions are expected to further advance the fields of computer vision, deep learning, and medical imaging analysis, addressing critical challenges and driving innovation in these domains.

NOTABLE PUBLICATION

Sensitivity evaluation of machine learning-based calibrated transportation mode choice models: A case study of Alexandria City, Egypt  2024