Jinsheng Wang – Civil Engineering – Best Researcher Award

Professor Jinsheng Wang - Civil Engineering - Best Researcher Award

Beijing Normal University - China

AUTHOR PROFILE

GOOGLE SCHOLAR

🌊 SUMMARY

Professor Jinsheng Wang stands as a pioneering figure in hydrogeology, environmental science, and groundwater pollution control in China. He serves as Professor, Doctoral Supervisor, and Assistant Dean at the College of Water Sciences, Beijing Normal University. As the Head of two national research centers and an expert member of the Ministry of Environmental Protection, his career is marked by multidisciplinary excellence. His leadership in research, consultancy, and higher education has contributed significantly to shaping China’s groundwater management policies. With over two decades of dedicated scholarship and more than 30 landmark publications, Professor Wang's impact extends across academia, government policy, and environmental engineering practices.

🎓 EARLY ACADEMIC PURSUITS

Professor Wang began his academic journey with a Master’s degree in Hydrogeology at Jilin University (1989–1991), later completing his Doctorate in the same field at the same university (1995–1998). His foundational years were shaped by a deep interest in groundwater dynamics, which evolved into a lifelong research commitment. The rigorous training at Jilin equipped him with advanced field knowledge in hydrogeological systems, groundwater modeling, and environmental assessments. His scholarly formation during this period laid the groundwork for his later expertise in numerical simulations, aquifer dynamics, and pollution remediation. He emerged from this phase with a strong academic identity, blending geoscience with environmental applications.

🏢 PROFESSIONAL ENDEAVORS

Currently, Professor Wang holds multiple leadership roles at Beijing Normal University, including Assistant Dean of the College of Water Sciences and Head of two key research centers: the Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education) and the Groundwater Science and Engineering Research Center. He has served as Principal Investigator for national and international research projects sponsored by the Ministry of Science and Technology, Natural Science Foundation of China, and other governmental agencies. His consultancy contributions span emergency environmental response, water conservation planning, and transboundary water studies. He is also a part-time professor at Jilin University, nurturing the next generation of hydrogeologists.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Professor Wang’s primary research focus revolves around groundwater renewability, pollution dynamics, and water resource modeling. His work integrates hydrochemical analysis, isotopic tracing, and numerical simulations to investigate groundwater systems in critical areas like the Beijing Plain and Yellow River Basin. He has contributed to the development of evaluation indicators for groundwater renewability, environmental impact modeling, and groundwater vulnerability assessment. His research supports sustainable water policy, enhances disaster management systems, and informs national groundwater legislation. Notably, his findings on aquifer recharge, pollutant migration, and water-rock interactions have advanced both academic literature and practical groundwater management strategies in China.

🏅 ACCOLADES AND RECOGNITION

Recognized nationally and internationally, Professor Wang has been entrusted with prestigious positions and major projects, reflecting his deep trust in scientific integrity and environmental stewardship. He was selected as a core member of the first Expert Group on Emergency Management under China’s Ministry of Environmental Protection. His scholarly outputs have been published in top-tier journals and government white papers, establishing him as a thought leader. His academic books, such as those co-authored on the Wenchuan Earthquake and groundwater in the Yellow River Basin, have become reference texts. His engineering insights are not only valued in academia but have become tools for policymakers and field engineers alike.

🌍 IMPACT AND INFLUENCE

The influence of Professor Wang extends beyond academic citations into real-world environmental and water policy reforms. His research has directly shaped groundwater protection action plans across China and improved early warning systems for environmental emergencies. He has enhanced technical understanding among stakeholders at the local and national levels, facilitating sustainable water use frameworks. Internationally, his collaborations have led to joint conferences, workshops, and peer-reviewed publications that bridge Chinese hydrogeology with global environmental concerns. Through mentorship, he has cultivated young scholars who now carry forward his mission in groundwater sustainability and environmental resilience.

🧬 LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Professor Wang is set to lead new frontiers in climate-resilient water management, groundwater recharge modeling, and integrated environmental systems. His vision includes refining vulnerability assessments using AI, promoting international knowledge exchange, and enhancing community-based water governance. His legacy is rooted in a deep understanding of natural systems and a commitment to advancing science for societal benefit. As an academic architect of China’s groundwater policies and a global contributor to environmental geosciences, Professor Wang’s future endeavors promise to leave a profound mark on the planet’s water future.

PUBLICATION

A level set method for structural topology optimization
Authors: MY Wang, X Wang, D Guo
Journal: Computer Methods in Applied Mechanics and Engineering

Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors
Authors: IK Mellinghoff, MY Wang, I Vivanco, DA Haas-Kogan, S Zhu, EQ Dia, ...
Journal: New England Journal of Medicine

Contamination features and health risk of soil heavy metals in China
Authors: H Chen, Y Teng, S Lu, Y Wang, J Wang
Journal: Science of the Total Environment

State of the climate in 2015
Authors: J Blunden, DS Arndt
Journal: Bulletin of the American Meteorological Society

Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery
Authors: CR Parikh, SG Coca, H Thiessen-Philbrook, MG Shlipak, JL Koyner, ...
Journal: Journal of the American Society of Nephrology

High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on …
Authors: X Fang, W Zhang, Q Meng, J Gao, X Wang, J King, C Song, S Dai, Y Miao
Journal: Earth and Planetary Science Letters

A Multicentre Study of Shigella Diarrhoea in Six Asian Countries: Disease Burden, Clinical Manifestations, and Microbiology
Authors: L Von Seidlein, DR Kim, M Ali, H Lee, XY Wang, VD Thiem, DG Canh, ...
Journal: PLoS Medicine

Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites
Authors: W Meng, X Wang, Z Xiao, J Wang, DB Mitzi, Y Yan
Journal: The Journal of Physical Chemistry Letters

“Color” level sets: a multi-phase method for structural topology optimization with multiple materials
Authors: MY Wang, X Wang
Journal: Computer Methods in Applied Mechanics and Engineering

An inactivated enterovirus 71 vaccine in healthy children
Authors: R Li, L Liu, Z Mo, X Wang, J Xia, Z Liang, Y Zhang, Y Li, Q Mao, J Wang, ...
Journal: New England Journal of Medicine

Ting-Yu Fan – Structural Engineering – Best Researcher Award

Ting-Yu Fan | Structural Engineering | Best Researcher Award

National Atomic Research Institute - Taiwan

AUTHOR PROFILE

ORCID

SCOPUS

SUMMARY

Ting-Yu Fan is a dedicated engineer and researcher at the National Atomic Research Institute, Taiwan. His expertise spans seismic analysis, soil-structure interaction, and thermal-hydraulic coupling, with a strong focus on nuclear and renewable energy infrastructures. Having contributed to international collaborative projects like DECOVALEX, he brings global perspective and depth to structural safety assessments. Through multidisciplinary research, industry consultancy, and cutting-edge modeling work, Fan continues to make notable advances in the safety and performance of critical energy systems under extreme environmental conditions.

EDUCATION

Ting-Yu Fan completed his Master of Engineering at National Cheng Kung University, Taiwan. His academic foundation centers on structural integrity assessment, seismic performance, and coupled thermal-hydraulic analysis. These areas laid the groundwork for his contributions to national and international research, especially in structural modeling and nuclear energy safety. His education provided the theoretical and technical base to tackle complex challenges in energy systems, particularly those involving fault mechanics, soil-structure interaction, and the behavior of engineered systems under extreme stress conditions.

PROFESSIONAL EXPERIENCE

Currently serving at the National Atomic Research Institute, Fan leads and participates in several government and industry-funded projects on nuclear safety and structural resilience. His prior engagements include critical work on offshore wind turbine support structures and safety cases for spent nuclear fuel disposal. He has contributed to structural evaluations against natural disasters such as typhoons and earthquakes. His professional journey reflects a continuous effort to bridge theoretical modeling with real-world engineering solutions in high-risk and sensitive infrastructures.

RESEARCH INTEREST

Ting-Yu Fan’s research interests span seismic performance evaluation of nuclear infrastructure, structural integrity under multi-hazard conditions, safety case development for spent nuclear fuel disposal, and advanced numerical modeling. He is particularly engaged in soil-structure interaction studies and fault reactivation modeling. His work also includes pioneering research in seismic isolation technologies for small modular reactors and extreme load responses of offshore wind support systems. These themes converge in his quest to enhance the safety, reliability, and sustainability of modern energy infrastructures.

AWARD AND HONOR

Ting-Yu Fan’s selection and participation in the DECOVALEX international research initiative reflect peer recognition of his expertise. His leadership roles in high-stakes government-funded projects further demonstrate his standing in Taiwan’s nuclear and structural engineering communities. His publications and project outcomes have contributed significantly to both academic knowledge and practical advancements in infrastructure safety, earning him a reputation as a trusted expert in the seismic and structural behavior of critical energy systems.

RESEARCH SKILL

Ting-Yu Fan brings advanced skills in seismic analysis, THM modeling, structural integrity evaluation, and numerical simulations. His toolkit includes fault activation modeling, soil-structure interaction analysis, and safety case development for complex nuclear systems. He is proficient in handling multidisciplinary data for integrated assessments of structural and geotechnical systems under environmental stressors. His ability to interpret seismic and thermal data and simulate real-world behaviors under extreme conditions stands as a cornerstone of his research success.

PUBLICATIONS

Title: Modeling the Influence of Soil-Structure-Interaction on Seismic Response of Jacket Substructure for the DTU 10MW Offshore Wind Turbine
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.
Journal: International Journal of Offshore and Polar Engineering (2022)

Title: Strength Analysis for a Jacket-Type Substructure of an Offshore Wind Turbine under Extreme Environment Conditions
Authors: Fan, T.-Y.; Chen, S.-H.; Huang, C.-C.
Journal: International Journal of Offshore and Polar Engineering (2020)

Title: Time-Domain Fatigue Analysis of Multi-Planar Tubular Joints for a Jacket-Type Substructure of Offshore Wind Turbines
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: International Journal of Offshore and Polar Engineering (2020)

Title: Fatigue Analysis for Jacket-Type Substructure of 5MW Offshore Wind Turbine in Time Domain and Evaluation of Fatigue Damage
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Journal of the Chinese Institute of Civil and Hydraulic Engineering (2018)

Title: Numerical Fatigue Analysis for Jacket-Type Substructure of Offshore Wind Turbines under Local Environmental Conditions in Taiwan
Authors: Fan, T.-Y.; Lin, C.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Proceedings of the International Offshore and Polar Engineering Conference (2018)

Title: Fatigue Analysis for Jacket-Type Support Structure of Offshore Wind Turbine under Local Environmental Conditions in Taiwan
Authors: Fan, T.-Y.; Huang, C.-C.; Chu, T.-L.
Journal: Proceedings of the International Offshore and Polar Engineering Conference (2017)

Title: Reissner's Mixed Variational Theorem-Based Finite Cylindrical Layer Methods for the Three-Dimensional Free Vibration Analysis of Sandwich Circular Hollow Cylinders with an Embedded Functionally Graded Material Layer
Authors: Wu, C.-P.; Fan, T.-Y.; Li, H.-Y.
Journal: Journal of Vibration and Control (2014)

CONCLUSION

Ting-Yu Fan exemplifies a modern researcher committed to public safety and energy resilience. His interdisciplinary approach blends engineering rigor with policy-oriented research outcomes. Through his contributions to nuclear safety, renewable energy systems, and geotechnical modeling, he enhances the scientific foundations for infrastructure design in seismically active and environmentally challenging regions. His work continues to impact engineering practices, regulatory standards, and academic collaboration, positioning him as a key contributor to the evolving field of energy systems engineering.

Abdelazim Mustafa Mohamed – Civil Engineering – Environmental Leadership in Civil Engineering Award

Abdelazim Mustafa Mohamed - Civil Engineering - Environmental Leadership in Civil Engineering Award

Prince Sattam bin Abdulaziz University - Saudi Arabia

AUTHOR PROFILE

Scopus

EARLY ACADEMIC PURSUITS

Abdelazim Mustafa Mohamed commenced his academic journey by pursuing a Bachelor's degree in Civil Engineering with Honors from Kuala Lumpur Infrastructure University, Malaysia, where he achieved an outstanding GPA of 3.83. He furthered his academic pursuits by completing a Master of Science in Civil Engineering at the University Technology Malaysia, where he graduated with a GPA of 3.82, earning first-class honors. Abdelazim continued his academic journey by obtaining dual PhD degrees in Civil Engineering, one from Alzeam Alazhari University in Khartoum, Sudan, and the other from the University Technology Malaysia in Skudai, Malaysia.

PROFESSIONAL ENDEAVORS

Abdelazim Mohamed has accumulated extensive professional experience in the field of Civil Engineering. He has served as a Civil Engineer at Zaytona Engineering & Contracting Co. Ltd. in Khartoum, Sudan. Additionally, he has held academic positions as a lecturer in the Civil Engineering Departments at Future Technology in Khartoum, Sudan, and Prince Sattam bin Abdulaziz University in Saudi Arabia.

CONTRIBUTIONS AND RESEARCH FOCUS

Abdelazim Mustafa Mohamed has made significant contributions to the field of Civil Engineering through his research endeavors. His research primarily focuses on concrete technology, with a particular emphasis on the utilization of Arabic Gum Biopolymer as an admixture to enhance the durability, microstructure properties, permeability, and tensile strength of concrete. He has published several research articles in reputable journals, addressing various aspects of concrete technology and construction project management.

IMPACT AND INFLUENCE

Abdelazim's research findings have contributed to advancements in concrete technology, providing valuable insights into the use of biopolymer admixtures for enhancing the performance and durability of concrete structures. His research has the potential to influence construction practices and promote sustainable solutions in the civil engineering industry.

ACADEMIC CITATIONS

Abdelazim Mustafa Mohamed's research articles have been cited in various academic publications, reflecting the significance and impact of his contributions to the field of Civil Engineering, particularly in the domain of concrete technology.

LEGACY AND FUTURE CONTRIBUTIONS

Abdelazim Mohamed's legacy in the field of Civil Engineering is characterized by his dedication to advancing knowledge and addressing practical challenges in construction materials and project management. His future contributions are poised to further enrich the field, with continued research endeavors aimed at enhancing the performance, sustainability, and resilience of civil infrastructure.

NOTABLE PUBLICATION

Predicting ultra-high-performance concrete compressive strength using gene expression programming method.   2023 (19)