Konan Edmond KOUASSI | Biomass and energy | Best Researcher Award

Dr. Konan Edmond KOUASSI | Biomass and energy | Best Researcher Award

Teacher-researcher at UNA, Ivory Coast

Dr. Kouassi Konan Edmond is a Maître-Assistant in Chemistry (Process Engineering) at the Université Nangui Abrogoua (UNA), Côte d’Ivoire. With extensive expertise in renewable energy, waste valorization, and water treatment processes, he has contributed significantly to the field of sustainable chemical engineering. His research focuses on optimizing biofuel production, energy recovery from biomass, and environmental sustainability. He has participated in multiple international scientific conferences and has authored numerous peer-reviewed publications.

Profile

Scopus

EDUCATION

Dr. Kouassi obtained his Doctorate in Fundamental and Applied Sciences (Chemistry – Process Engineering) from Université Nangui Abrogoua in 2016. His dissertation focused on optimizing vegetable oil transesterification for fuel production using experimental designs and artificial intelligence. He previously earned a Diplôme d’Etudes Approfondies (DEA) in Material Sciences and a Master’s in Physical Chemistry, specializing in thermodynamics and process engineering. His early education includes a Bachelor’s degree in Fundamental Sciences and Applied Chemistry.

EXPERIENCE

Since 2018, Dr. Kouassi has been teaching General Chemistry and Energy Process Engineering at UNA, covering subjects such as thermodynamics, kinetics, and water chemistry. His professional background includes doctoral research at the Laboratory of Industrial Processes and Renewable Energy (LAPISEN) and collaborations with leading researchers in bioenergy and waste valorization. He has also been involved in capacity-building workshops and training programs to advance scientific research methodologies.

RESEARCH INTEREST

Dr. Kouassi’s research focuses on renewable energy production, process optimization, and environmental sustainability. His expertise includes biofuel synthesis, wastewater treatment, solid waste management, and the application of artificial intelligence in chemical engineering. He has extensively studied biodiesel production through transesterification and the valorization of agricultural waste for energy applications. His work contributes to advancing sustainable energy solutions in Côte d’Ivoire and beyond.

AWARDS

Dr. Kouassi has been recognized for his contributions to green chemistry and bioenergy. He has received awards for outstanding research in chemical engineering, including excellence awards for his work on biofuel optimization. His active participation in scientific societies such as the West African Society of Chemistry (SOACHIM) has further established his reputation as a leading researcher in sustainable energy solutions.

PUBLICATIONS

Kouassi Konan Edmond et al. (2018). “Optimization of Rubber Seed Oil Transesterification to Biodiesel Using Experimental Designs and Artificial Neural Networks.” Green and Sustainable Chemistry, cited by multiple energy research articles.

Abollé Abollé & Kouassi Konan Edmond et al. (2017). “Empirical Correlations Between Viscosity, Density, and Cloud Point of Diesel Oil Mixtures with Straight Vegetable Oils.” International Journal of Engineering and Technical Research.

Alain Stéphane Assémian & Kouassi Konan Edmond et al. (2018). “In-Situ Generation of Effective Coagulant to Treat Textile Bio-Refractory Wastewater.” Journal of Environmental Chemical Engineering.

Yao Joseph Adjoumani & Kouassi Konan Edmond et al. (2019). “Modeling and Optimization of Two Clays Acidic Activation for Phosphate Ions Removal.” Journal of Water Resource and Protection.

Horo Koné & Kouassi Konan Edmond et al. (2020). “Thermal Regeneration of Activated Carbon Saturated with Nitrate Ions.” International Journal of Advanced Engineering, Management, and Science.

ZRAN Vanh Eric-Simon & Kouassi Konan Edmond et al. (2022). “Valorization of Plantain Peels Waste in Biosorbents for Methylene Blue Removal.” International Journal of Scientific Research and Reviews.

Moya Joëlle Carole Akossi & Kouassi Konan Edmond et al. (2023). “Transesterification of Vegetable Oils into Biodiesel by an Immobilized Lipase: A Review.” Biofuels.

CONCLUSION

Dr. Kouassi Konan Edmond’s extensive research output, scientific leadership, and contributions to process engineering and environmental sustainability make him an outstanding candidate for the Best Researcher Award. His work advances renewable energy solutions and promotes sustainable industrial practices, highlighting his impact on academia and society.

Hurayra Md Abu | Energy Power | Best Researcher Award

Mr Hurayra Md Abu | Energy Power | Best Researcher Award

Student/Member, North China Electric Power University, China

Md Abu Hurayra is a dedicated mechanical engineering student at North China Electric Power University (NCEPU), Beijing, China. Specializing in heat and mass transfer, energy storage, computational fluid dynamics (CFD), new energy materials, and mechanical design, Hurayra is committed to pushing the boundaries of sustainable energy solutions. With a top rank in both his Bachelor’s and Diploma programs, he has established a solid foundation in mechanical engineering. His research interests focus on enhancing energy efficiency, exploring innovative energy storage materials, and applying AI in mechanical design. Hurayra is recognized for his contributions to green technologies and sustainable practices, which are reflected in his published work. He continues to pursue academic excellence, aiming to drive advancements in energy and mechanical engineering. Hurayra’s dedication to his field is evident in his achievements, and he is poised to make significant contributions to the industry.

Profile

Google Scholar

Strengths for the Award

Md Abu Hurayra demonstrates exceptional academic and research capabilities, which make him a strong contender for the Best Researcher Award. His academic achievements, including being ranked 1st in both his Bachelor’s and Diploma programs, highlight his commitment to excellence. His research focuses on critical areas such as heat and mass transfer, energy storage, new energy materials, and the application of AI in mechanical design. His work on biomaterials for energy storage, published in Green Technologies and Sustainability, reflects his contribution to sustainable technologies, a key area of global importance. Hurayra has shown solid potential in translating theoretical knowledge into practical, innovative solutions for energy efficiency and sustainability, positioning him as a future leader in the field.

Areas for Improvement

While Hurayra has made impressive strides in his academic journey, there are a few areas where further development could strengthen his profile for the award. His citation index, publication count, and involvement in industry-sponsored projects could be expanded to demonstrate the broader impact and recognition of his research. Gaining more hands-on experience in applied industry research, as well as publishing more articles in high-impact journals, could further establish his research visibility. Also, leadership in collaborative research and editorial roles in high-tier journals could amplify his academic influence.

Education 

Md Abu Hurayra is currently pursuing a Bachelor of Science in Mechanical Engineering at North China Electric Power University (NCEPU), Beijing, China, with an impressive score of 87.73% in the 6th semester and ranking 1st out of 35 students. He has demonstrated outstanding academic performance, reflecting his passion and commitment to the field of mechanical engineering. Prior to his undergraduate studies, Hurayra completed a Diploma in Mechanical Technology at the Bangladesh Sweden Polytechnic Institute (BSPI) in Chittagong, Bangladesh, where he earned a CGPA of 3.93 out of 4.00, securing the top rank in his class. His educational background provides him with a comprehensive understanding of mechanical engineering principles, reinforced by his expertise in energy systems, heat transfer, and mechanical design. Hurayra’s academic achievements highlight his strong technical abilities and potential for future innovation in the mechanical and energy engineering sectors.

Experience 

Md Abu Hurayra has been actively involved in various research and consultancy projects during his academic journey. At North China Electric Power University, he has participated in cutting-edge research related to heat and mass transfer, energy storage, and CFD. His involvement in these projects has allowed him to apply theoretical knowledge to real-world challenges, particularly focusing on enhancing energy storage systems and exploring new energy materials. Hurayra has also contributed to collaborative industry projects, where he worked alongside professionals to develop innovative mechanical design solutions, integrating AI to optimize performance. His technical skills, combined with his ability to collaborate effectively with diverse teams, have positioned him as a valuable asset to research initiatives. Additionally, Hurayra’s experience in publishing research articles and presenting at conferences further demonstrates his growing influence in the field of mechanical engineering, particularly in energy and sustainability-related projects.

Awards and Honors

Md Abu Hurayra has received several academic and research-related honors in recognition of his dedication and excellence. He was ranked 1st in both his Bachelor’s program at North China Electric Power University (NCEPU) and his Diploma course at Bangladesh Sweden Polytechnic Institute (BSPI), reflecting his academic prowess and commitment to mechanical engineering. His research in energy storage and sustainable technologies has been acknowledged by peers and faculty, positioning him as a promising young researcher. Hurayra’s scholarly achievements include recognition for his work in heat and mass transfer, where he has contributed valuable insights into energy efficiency. His leadership in various research initiatives, combined with his ability to apply theoretical concepts to real-world applications, has earned him respect within the academic community. As he continues his studies and research, Hurayra is expected to receive further recognition for his contributions to energy technologies and mechanical design.

Research Focus 

Md Abu Hurayra’s primary research focus lies at the intersection of heat and mass transfer, energy storage systems, and the application of AI in mechanical design. His research interests extend to developing new energy materials that can enhance the efficiency and sustainability of energy storage technologies. Hurayra’s work in computational fluid dynamics (CFD) explores how fluid dynamics can be optimized in energy systems, such as batteries and renewable energy systems, to maximize performance. He is passionate about green technologies and sustainable solutions that address the growing energy challenges of today’s world. Hurayra also focuses on the application of AI in mechanical design to improve system optimization, reduce energy consumption, and foster innovation in energy-efficient products. His interdisciplinary approach, integrating material science, thermodynamics, and advanced computational techniques, places him at the forefront of research into next-generation energy solutions.

Publication Top Notes

  1. Biomaterials for energy storage: Synthesis, properties, and performance 🌱🔋 (MS Chowdhury, MS Oliullah, RT Islam, MA Hurayra, MZ Al Mahmud, et al.) Green Technologies and Sustainability, 100152

Conclusion

Md Abu Hurayra possesses a strong foundation in mechanical engineering and energy systems. His research contributions to sustainable energy storage and mechanical design are notable, and his potential for future innovation is clear. While there is room for further growth in terms of publishing more research and gaining wider industry exposure, his dedication, academic achievements, and the impact of his work on energy solutions make him a highly suitable candidate for the Best Researcher Award. With continued research contributions and collaborations, Hurayra is poised to become a leading figure in the field of mechanical and energy engineering.