Xuemei Wei | Materials Science and Engineering | Best Paper Award

Dr Xuemei Wei | Materials Science and Engineering | Best Paper Award


Assistant Researcher, Shaoxing University, China

Dr. Xuemei Wei is an accomplished researcher specializing in metal-organic chemistry and catalysis. She holds a Ph.D. in Physical Chemistry from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. Her expertise lies in the development of nano-catalytic materials for environmental and energy applications. With over 12 SCI publications in high-impact journals, she has made significant contributions to catalyst design and chemical transformations. Currently, she serves as an Assistant Researcher at Shaoxing University, where she advances research in pharmaceutical and chemical sciences. Her work integrates innovative nanomaterials to address environmental challenges and sustainable energy solutions.

PROFESSIONAL PROFILE

Scopus

EDUCATION

πŸŽ“ Ph.D. in Physical Chemistry – Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (2018-2021)
πŸ“ Thesis: Design and Mechanism of Efficient Carbonylation Catalysts under Ambient Conditions.
πŸŽ“ M.Sc. in Inorganic Chemistry – Inner Mongolia University (2013-2016)
πŸŽ“ B.Sc. in Chemistry – Jilin Normal University (2009-2013)

PROFESSIONAL EXPERIENCE

πŸ”¬ Assistant Researcher – Shaoxing University, College of Chemistry and Chemical Engineering (2021-Present)
πŸ” Focus: Development of nano-catalytic materials for industrial and environmental applications.
πŸ§ͺ R&D Specialist – Changchun Zhongke Haorong New Materials Research Co., Ltd. (2016-2018)
πŸš€ Developed and optimized catalytic materials for large-scale industrial use.

AWARDS & HONORS

πŸ† Recognized for research contributions in metal-organic chemistry.
πŸ“œ Multiple SCI-indexed publications in top-tier journals.
🌍 Acknowledged for innovative approaches in environmental catalysis.

RESEARCH FOCUS

πŸ§ͺ Catalysis Under Ambient Conditions: Development of carbonylation catalysts for industrial applications.
🌱 Environmental Nanomaterials: Engineering nanomaterials for pollutant degradation and remediation.
⚑ Sustainable Energy Catalysis: Exploring hydrodeoxygenation reactions for green chemistry solutions.

PUBLICATION TOP NOTES

πŸ“„ Turning on Ambient Conditions Hydrodeoxygenation of Biobased Aromatic Alcohols – Energy Conversion and Management (2025)
πŸ“„ Construction of MXene-loaded Nanoscale Zero-Valent Iron for ReO4-/TcO4- Sequestration – Separation and Purification Technology (2024)
πŸ“„ Deciphering the Facet-Dependent Scavenging Potential of Ξ±-Fe2O3 Nanocrystals – Applied Surface Science (2024)
πŸ“„ Crucial Size Effect on Dicarbonylation of Acetylene Over Pd/CsHPMo Catalysts – Dalton Transactions (2024)
πŸ“„ Targeting Phosphodiesterase 4 as a Therapeutic Strategy for Cognitive Improvement – Bioorganic Chemistry (2023)
πŸ“„ Vesicular BiVO4 Nanostructures Modified by g-C3N4 Quantum Dots – Materials Science in Semiconductor Processing (2024)
πŸ“„ Synergistic Effect of Hematite Facet and Pd Nanocluster for Acetylene Dicarbonylation – Molecular Catalysis (2021)
πŸ“„ Strong Metal-Support Interactions Between Palladium Nanoclusters and Hematite – New Journal of Chemistry (2020)
πŸ“„ Highly Efficient Selective Dicarbonylation of Acetylene Catalyzed by Palladium Nanosheets – New Journal of Chemistry (2020)
πŸ“„ Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous – Progress in Chemistry (2020)
πŸ“„ Advances in Research on Structure-Activity Relationship in Hydrogenation Catalysts – Chemical Industry and Engineering Progress (2020)
πŸ“„ Support Morphology-Dependent Catalytic Activity of Co/CeO2 for Phenol Hydrogenation – New Journal of Chemistry (2020)

CONCLUSION

Dr. Xuemei Wei is a leading researcher in catalysis and nanomaterials, making significant strides in environmental and sustainable chemistry. Her contributions to metal-organic chemistry and catalytic performance have earned her recognition in top scientific journals. As an Assistant Researcher at Shaoxing University, she continues to develop innovative solutions for industrial and environmental challenges. πŸš€πŸ”¬

Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assist. Prof. Dr Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assistant Professor, Concordia University, Canada

Dr. Hang Xu is an Assistant Professor in the Department of Mechanical, Industrial, and Aerospace Engineering at Concordia University, Montreal, Canada. With a Ph.D. in Mechanical Engineering from McGill University and an MSc in Aircraft Design from Beijing University of Aeronautics and Astronautics, Dr. Xu specializes in mechanical metamaterials, smart structures, and additive manufacturing. His research focuses on developing advanced materials with programmable morphing and motion for aerospace, medical, and robotic applications. Prior to joining Concordia, he held research positions at Imperial College London and Siemens, contributing to innovations in multi-stable structures, soft robotics, and medical devices. Dr. Xu is recognized for his teaching excellence and has received awards for his contributions to research during the COVID-19 pandemic.

Professional Profile

Orcid

Scopus

Education πŸŽ“

  • Doctorate in Mechanical Engineering, McGill University (2013–2018)
    Supervisor: Damiano Pasini
  • Master’s Thesis in Aircraft Design, Beijing University of Aeronautics and Astronautics (2011–2013)
    Supervisor: Yuanming Xu
  • Bachelor’s in Aircraft Design and Engineering, Shenyang Aerospace University (2007–2011)
    Supervisor: Weiping Zhang

Experience πŸ’Ό

  • Assistant Professor, Concordia University (2022–Present)
    Research on functional/smart metamaterials for aerospace, nautical, and medical applications.
  • Research Associate, Imperial College London (2020–2022)
    Developed multi-stable structures, soft robots, and medical devices.
  • Postdoctoral Researcher, McGill University (2018–2020)
    Worked on thermally actuated deployable mechanisms and additive manufacturing processes.
  • Internships: Chinese Aircraft Design Institute of Aviation Medicine (2012–2013) and Shenyang Aircraft Design Institute (2010–2011).

Awards and Honors πŸ†

  • Teaching Excellence Award, Concordia University (2023)
  • Associate Fellowship of the Higher Education Academy (AFHEA), UK (2022)
  • Excellent Contribution to Research in COVID-19 Pandemic, Imperial College London (2021)
  • Winner of 3D-Printing Workshop Design Challenge, McGill University (2019)

Research Focus πŸ”¬

Dr. Xu’s research focuses onΒ mechanical metamaterials,Β smart materials and structures, andΒ additive manufacturing. His work aims to develop materials with programmable morphing and motion for applications inΒ aerospace structures,Β soft robotics,Β medical devices, andΒ composite materials. Key areas include multiscale mechanics, finite element analysis, and the design of multi-stable structures for innovative functionalities.

Publication Top Notes πŸ“š

  1. Embedded pressure sensing metamaterials using TPU-graphene composites and additive manufacturing
  2. Generalized tessellations of superellipitcal voids in low porosity architected materials for stress mitigation
  3. Thermally actuated hierarchical lattices with large linear and rotational expansion
  4. Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  5. ABAQUS user subroutine UMAT for elastoplastic nonlinear kinematic hardening material (MrΓ³z model) with anisotropic plasticity
  6. Digitally Programmable Architected Materials with Static and Dynamic Reconfiguration
  7. Multi-stable meta-materials with programmable reconfigurations for soft robots
  8. 3D printed soft metamaterial force sensors for gait monitoring using TPU-graphene composites
  9. Overcoming the strength-modulus tradeoff using double network metamaterial lattices
  10. Multi-stable architectured materials with high-mobility morphing

Conclusion 🌟

Dr. Hang Xu is a leading researcher in mechanical metamaterials and smart structures, with a strong focus on innovative applications in aerospace, robotics, and medical devices. His contributions to teaching, research, and industry collaborations highlight his commitment to advancing materials science and engineering. Through his work, Dr. Xu continues to push the boundaries of programmable materials, paving the way for future technological advancements. πŸš€

 

Bankim Chandra Ray – New Structural Materials – Best Researcher Award

Bankim Chandra Ray - New Structural Materials - Best Researcher Award

National Institute of Technology - India

AUTHOR PROFILE

GOOGLE SCHOLAR

PROFESSIONAL BACKGROUND

Dr. Bankim Chandra Ray holds the position of Professor in the Department of Metallurgical and Materials Engineering at National Institute of Technology, Rourkela, India. With over 33 years of teaching experience at this premier institute, his research focuses on the environmental impact on FRP composites, particularly exploring mechanistic origins of damage phenomena and the synthesis of polymer nanocomposites under ultra-low temperatures using sono-electro-chemical principles.

RESEARCH EXPERTISE AND CONTRIBUTIONS

His scholarly work spans diverse areas including solidification behavior of Al-Si alloys, micro-examinations of interfaces in metal matrix systems, and computer modeling of phase transformations in ferrous materials. Notably, he investigates the role of carbon nanotubes in enhancing the low-temperature performance of FRP nano-composites. Dr. Ray has authored 247 scientific papers, with 146 published in international journals, and serves as a regular reviewer for high-impact journals in composites and materials science.

ACADEMIC LEADERSHIP AND INSTITUTIONAL ROLES

Throughout his career, Dr. Ray has held various leadership positions at NIT Rourkela, including Dean of Faculty Welfare, Head of the Department of Metallurgical and Materials Engineering, and currently as a Professor HAG. He also serves as Technical Advisor to TATA Steel New Materials Business and Editor of Transactions of the Indian Institute of Metals (TIIM) published by Springer. He coordinates multi-crore integrated Research and Development proposals, notably establishing the Steel Technology Centre at NIT Rourkela.

RECOGNITIONS AND ACHIEVEMENTS

Dr. Ray’s contributions have earned him global recognition, being listed among the world’s top 2% scientists consecutively in 2020 and 2021 by Stanford University. He has been appointed Editor of TIIM and has chaired significant workshops and seminars on FRP composites. His keynote lectures on environmental durability and mechanical behavior of composites have made substantial impacts in both academic and industrial circles.

PROFESSIONAL MEMBERSHIPS AND SERVICE

Active in professional societies, Dr. Ray holds memberships in Indian Institute of Metals, The Institute of Engineers (India), The Indian Institute of Chemical Engineers, The Computer Society of India, and The Indian Society of Technical Education. He contributes extensively to academic journals as Editor-in-Chief and advisory board member, furthering the discourse in manufacturing, material science, and metallurgical engineering.

NOTABLE PUBLICATION

Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: An assessment of the influence of functional groups 2019 (116)

Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: An emphasis on graphene oxide content 2017 (113)

Effect of post-curing on thermal and mechanical behavior of GFRP composites 2015 (135)

Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content 2016 (179)

Ravindranadh – Materials Science and Engineering – Excellence in Research

Ravindranadh - Materials Science and Engineering - Excellence in Research

GMR INSTITUTE OF TECHNOLOGY - India

AUTHOR PROFILE

Scopus
ORCID

EARLY ACADEMIC PURSUITS

Ravindranadh's academic journey is marked by outstanding achievements and dedication to Materials Science and Engineering. He completed his B.Sc. in Physics, Mathematics, and Chemistry from Acharya Nagarjuna University, Guntur, A.P., India, in 2005, securing second position in his class. He went on to top his M.Sc. in Physics with Condensed Matter Physics from the same university in 2007. His academic excellence continued as he completed his M.Phil. in 2012, with a thesis on the preparation and characterization of Co(II) ions doped PVA capped CdSe nanoparticles. In 2015, he earned his Ph.D. with a focus on mechanochemical synthesis and spectral characterizations of transition metal ions doped Ca-Li hydroxyapatite nanopowders from Acharya Nagarjuna University.

PROFESSIONAL ENDEAVORS

Ravindranadh's professional career spans various prestigious institutions and roles. He began as a lecturer in the Department of Physics at Bapatla Engineering College, Guntur, Andhra Pradesh, India. His research journey took him to Acharya Nagarjuna University as a research fellow and later to Chirala Engineering College as Research Director and Associate Professor. His post-doctoral work included significant projects under the BK21+ program at Gyeongsang National University and Nano/Mems Lab at Yeungnam University, Republic of Korea. From March 2021 to November 2023, he served as an Assistant Professor in the Department of Robotics Engineering at Yeungnam University. Currently, he is the Associate Dean of R&D and Professor in Physics at GMR Institute of Technology, Andhra Pradesh, India.

CONTRIBUTIONS AND RESEARCH FOCUS

Ravindranadh's research interests lie in Materials Science and Engineering, focusing on mono and bimetallic nanocomposites, UV and visible light enhanced metal-semiconductor nanocomposites, photocatalysis, photoelectrochemical hydrogen generation, nano-phosphors, and nano polymers. His expertise extends to the synthesis of nanoparticles using pulsed laser ablation and the growth of transition metal-bearing crystals. He is proficient in using advanced instrumentation like UV‑VIS‑NIR spectrophotometers, photoluminescence, XRD, FT-IR, SEM, TEM, ultracentrifuge, and ball milling. His work has led to 134 journal publications, 12 conference proceedings, 100 conference presentations, and two books, establishing him as a leading figure in Materials Science and Engineering.

IMPACT AND INFLUENCE

Ravindranadh's contributions to Materials Science and Engineering have been recognized globally. He has been selected as one of the top 2% of researchers in the world by Elsevier in 2021, 2022, and 2023. His research has significantly impacted the fields of photocatalysis, nanocomposites, and wide bandgap semiconductors. His academic awards, including the Best Researcher & Best Teacher award from the Global Management Council and the Young Scientist award for Best Poster Presentation at the Indian Youth Science Congress, highlight his influence and dedication to advancing science and technology.

ACADEMIC CITES

Ravindranadh's scholarly work is highly cited, reflecting his influence in the academic community. His research on Materials Science and Engineering is frequently referenced, demonstrating the relevance and impact of his contributions. His selection as one of the top 2% of researchers globally is a testament to the high citation rates and the significance of his published work.

LEGACY AND FUTURE CONTRIBUTIONS

Ravindranadh's legacy in Materials Science and Engineering is built on a foundation of rigorous research, innovative contributions, and academic excellence. As the Associate Dean of R&D and Professor in Physics, he continues to mentor the next generation of scientists and engineers. His future contributions are expected to further advance the fields of nanocomposites, photocatalysis, and material properties, cementing his legacy as a pioneer in Materials Science and Engineering.

MATERIALS SCIENCE AND ENGINEERING

Throughout his career, Ravindranadh has made significant strides in Materials Science and Engineering. His research has focused on developing advanced materials with superior properties, including mono and bimetallic nanocomposites and nano-phosphors. His expertise in Materials Science and Engineering has led to groundbreaking work in photoelectrochemical hydrogen generation and the transport and optical properties of wide bandgap semiconductors. His dedication to Materials Science and Engineering ensures his continued impact and leadership in this critical fields.

NOTABLE PUBLICATION

Mechanistic insights into chromium ions-doped lithium zinc borate nanosheet photocatalysis for mineral pollutant removal 2024

Pt anchored functionalized graphene nanosheets: A stable oxygen reduction electrocatalyst in alkaline electrolyte 2024

A 2D/2D (ZnO/InVO4) heterojunction and its Z-scheme photocatalytic degradation of tetracycline and potassium butyl xanthate 2024 (2)

Salen complex of amino alcohol incorporated in two-dimensional matrices for supercapacitor applications 2023 (1)

Yassir Wardi – Composite structures – Best Researcher Award

Yassir Wardi - Composite structures - Best Researcher Award

INSA Rennes/LGCGM - France

AUTHOR PROFILE

Scopus
ORCID

EARLY ACADEMIC PURSUITS

Yassir Wardi's academic journey began with a Bachelor's degree in Civil Engineering from Ecole Mohammadia d'Ingenieurs (EMI) in Morocco, where he laid the groundwork for his future in structural engineering. He furthered his education with a Master's degree in Structural Engineering from Budapest University of Technology and Economics (BUTE), Hungary, enhancing his knowledge in areas such as structural dynamics and seismic design. This journey culminated in a Ph.D. in Structural Engineering from INSA de Rennes, France, focusing on composite structures and finite element analysis.

PROFESSIONAL ENDEAVORS

As a structural engineer at ARC-S Group, Yassir Wardi gained hands-on experience in structural design and modeling of various constructions, including concrete, steel, and Cross-Laminated Timber (CLT) houses. His in-house R&D projects honed his skills in innovative structural systems and prepared him for his current role as a professor at Hubei University of Economics.

CONTRIBUTIONS AND RESEARCH FOCUS

Yassir's research focuses on composite structures, particularly the development of finite element models to analyze the behavior of composite beams under different loading conditions. His work has contributed to the understanding of structural response to time effects such as creep and shrinkage, enhancing the accuracy of structural predictions and design methodologies.

IMPACT AND INFLUENCE

Yassir's research has made a significant impact on the field of structural engineering, particularly in the analysis and design of composite structures. His publications in reputable journals and conferences have garnered attention, contributing to the advancement of knowledge and methodologies in the field.

ACADEMIC CITES

Yassir's publications have been cited multiple times, reflecting the relevance and impact of his research in the academic community. His work serves as a foundational resource for researchers and practitioners in the field of composite structures and finite element analysis.

LEGACY AND FUTURE CONTRIBUTIONS

Yassir Wardi's legacy lies in his dedication to advancing the understanding and design of composite structures. His future contributions are poised to further push the boundaries of knowledge in this field, paving the way for safer, more efficient, and sustainable structural solutions.

NOTABLE PUBLICATION

3D formulation of mono-symmetrical composite beams with deformable connection 2024