SunJae Yoo | Concrete Structure | Best Scholar Award

Dr SunJae Yoo | Concrete Structure | Best Scholar Award

Postdoctoral Researcher, Korea University, South Korea

Dr. Yoo Sun-Jae is a dedicated researcher specializing in advanced materials and structural engineering, particularly focusing on carbon fiber-reinforced polymer (CFRP) bars, ultra-high-performance fiber-reinforced concrete (UHPFRC), and fire-resistant concrete structures. With a Ph.D. from Korea University, his work explores bonding behaviors, impact resistance, and fire-damaged concrete rehabilitation. Dr. Yoo has contributed significantly to the development of lightweight high-strength concrete using nanotechnology and innovative shelter-in-place (SIP) infrastructure. His research combines experimental and analytical approaches to advance sustainable and resilient construction technologies. Recognized for his excellence, he has received awards such as the Best Poster Award from the Korean Society of Civil Engineers and the Best Paper Award from the Journal of the Korean Society of Hazard Mitigation. Dr. Yoo is also an active contributor to international conferences and holds patents for concrete reinforcement technologies.

Professional Profile

Google Scholar

Education 🎓

Dr. Yoo Sun-Jae earned his Bachelor’s (2019), Master’s (2021), and Ph.D. (2025) in Civil Engineering from Korea University, Seoul, Republic of Korea. His Ph.D. dissertation focused on the bond performance of ribbed CFRP bars in UHPFRC after exposure to elevated temperatures, achieving a GPA of 4.23/4.50. During his Master’s, he investigated strengthening methods for two-way slabs under low-velocity impact loading, graduating with a GPA of 3.85/4.50. His academic journey reflects a strong foundation in structural engineering, reinforced by his advisor, Professor Young Soo Yoon. Dr. Yoo’s education has equipped him with expertise in advanced materials, concrete behavior, and innovative construction techniques.

Experience 🔧

Dr. Yoo Sun-Jae has extensive research experience, including projects funded by the National Research Foundation of Korea (NRF) and the Korea Agency for Infrastructure Technology Advancement. His work spans the development of smart strengthening techniques for fire-damaged concrete structures, CFRP reinforcements with zero corrosion, and lightweight high-strength concrete using nanotechnology. He has also contributed to the development of SIP infrastructure and DfMA-based modules for curved bridges. Dr. Yoo’s hands-on experience includes experimental analysis, material development, and structural optimization, making him a versatile researcher in civil engineering and construction materials.

Awards and Honors 🏆

Dr. Yoo Sun-Jae has been recognized for his outstanding contributions to civil engineering. In 2023, he received the Best Poster Award from the Korean Society of Civil Engineers. Earlier, in 2021, he was honored with the Best Paper Award from the Journal of the Korean Society of Hazard Mitigation. His academic excellence was acknowledged in 2018 with the Academic Achievement Excellence Award from Korea University. These accolades highlight his dedication to advancing research in structural engineering and innovative construction materials.

Research Focus 🔍

Dr. Yoo Sun-Jae’s research focuses on the bonding behavior of CFRP bars in UHPFRC, particularly under elevated temperatures and fire conditions. He investigates the impact resistance, fire resistance, and development length of concrete structures reinforced with advanced materials. His work also includes the development of lightweight high-strength concrete using carbon nanotubes (CNTs) and the optimization of SIP infrastructure. Dr. Yoo’s research integrates experimental and analytical approaches to enhance the durability, safety, and sustainability of modern construction materials and techniques.

Publication Top Notes 📚

  1. Flexural behavior of ribbed CFRP bars in UHPFRC beams with lap-splice connection.
  2. Degradation of flexural bond of CFRP bar in UHPFRC after exposure to elevated temperature.
  3. Reinforcing effect of CNT on the microstructure and creep properties of high-strength lightweight concrete.
  4. Flexural bond behavior and development length of ribbed CFRP bars in UHPFRC.
  5. Structural benefits of using carbon nanotube reinforced high-strength lightweight concrete beams.
  6. Bonding behavior and prediction of helically ribbed CFRP bar embedded in UHPC.
  7. Comparative bond-slip response of ribbed CFRP bar to UHPC after exposure to high temperature.
  8. Evaluation of residual bond behavior of CFRP and steel bars embedded in UHPC after elevated temperature.
  9. Effect of design code and evacuation information on strategic location of SIP in light rail stations.
  10. Effect of strengthening methods on two-way slab under low-velocity impact loading.
  11. Effect of internal curing on shrinkage and creep of self-compacting lightweight concrete.
  12. Post-heating flexural performance of UHPFRC members reinforced with ribbed CFRP bar.
  13. Influence of elevated temperature on the flexural behavior of spliced CFRP bars in UHPFRC beams.

Conclusion 🌟

Dr. Yoo Sun-Jae is a highly accomplished researcher whose work in CFRP bars, UHPFRC, and fire-resistant concrete structures has significantly advanced the field of civil engineering. His innovative approaches to material development and structural optimization have earned him numerous accolades and patents. Through his research, Dr. Yoo continues to contribute to the development of sustainable, resilient, and high-performance construction technologies, ensuring safer and more durable infrastructure for the future.

Mohammad Rasul Givkashi – Concrete technology – Best Researcher Award

Mohammad Rasul Givkashi - Concrete technology - Best Researcher Award

Amirkabir University of Technology Department of Civil Engineering - Iran

AUTHOR PROFILE

GOOGLE SCHOLAR

RESEARCH INTERESTS

MohammadRasul Givkashi, a distinguished scholar at Amirkabir University of Technology, has dedicated his research to advancing the field of civil engineering. His primary interests include new construction technologies, innovative construction materials, green and smart buildings, 3D printing of buildings, and special concretes. His work focuses on enhancing the sustainability, efficiency, and durability of construction practices.

EDUCATIONAL BACKGROUND

Givkashi completed his Master of Science in Civil Engineering, specializing in Construction Management, at Amirkabir University of Technology in Tehran, Iran, from 2021 to 2024. His outstanding academic performance is reflected in his perfect GPA of 4.0 (18.95/20). His thesis, supervised by Dr. Faramarz Moodi, investigated the durability assessment of 3D printed concrete with air-entraining admixture. He also holds a Bachelor of Science in Civil Engineering from the same university, achieved in 2021 with a GPA of 3.9 (18.17/20).

HONORS AND AWARDS

Throughout his academic career, Givkashi has received numerous accolades, including ranking 1st in Civil Engineering with a major in Construction Management among his peers at Amirkabir University of Technology in 2020. He was also included in the facilities of the National Elite Foundation for two consecutive years and received 'Straight' M.Sc. Admission Offers to top universities in Iran due to his high GPA.

RESEARCH PROJECTS

Givkashi has actively participated in several significant research projects. These include modeling composite reinforced concrete columns using finite element software, designing highways and residential buildings, and contributing to the Smart Schools Plan under the National Elite Foundation. His projects, supervised by renowned academics such as Dr. Aliakbar Ramezanianpor and Dr. Alireza Rahai, highlight his expertise in both theoretical and practical aspects of civil engineering.

PUBLICATIONS

His research contributions are well-documented in reputable journals. Notable publications include a comparative study on the fineness of low-grade calcined clays on the properties of blended concretes in the Civil Engineering Infrastructures Journal, and a feasibility study on 3D printing concrete for building construction in the AUT Journal of Civil Engineering. His work has also explored the simulation of evacuation in educational buildings and the factors affecting the drying shrinkage and compressive strength of slag geopolymer mortar mixtures.

PROJECT SUPERVISION

Givkashi has demonstrated strong leadership in guiding research projects. He has worked on the durability of 3D printed concrete, highway design, and the design of residential buildings with both reinforced concrete and steel frames. His supervision has helped shape innovative solutions in civil engineering, emphasizing practical applications and sustainability.

PROFESSIONAL DEVELOPMENT

In addition to his academic achievements, Givkashi has actively engaged in professional development through his involvement in the National Elite Foundation and participation in faculty Olympiad teams. His dedication to continuous learning and professional growth underscores his commitment to advancing the field of civil engineering.

CONTRIBUTIONS TO CIVIL ENGINEERING

Givkashi's contributions to civil engineering are substantial, encompassing innovative research, impactful publications, and active participation in significant projects. His work not only advances academic knowledge but also provides practical solutions to contemporary challenges in construction and infrastructure development. His commitment to excellence and innovation makes him a valuable asset to the field of civil engineering.

NOTABLE PUBLICATION

  • Effects of different types of fibers on fresh and hardened properties of cement and geopolymer-based 3D printed mixtures: a review.
    • Authors: A Ramezani, S Modaresi, P Dashti, MR GivKashi, F Moodi, ...
    • Year: 2023
  • Software simulation of chloride ions penetration into composite of pre-fabricated geopolymer permanent formworks (PGPFs) and substrate concrete.
    • Authors: ER Dehkordi, F Moodi, MR GivKashi, AA Ramezanianpour, M Khani
    • Year: 2022
  • Considerations for the Construction, Implementation and Economic Evaluation of Geopolymer Permanent Formworks (GPFs): A New Approach to Protect Concrete Structures Against...
    • Authors: E Riahi Dehkordi, MR GivKashi
    • Year: 2023
  • Investigating the applications of geopolymer mixtures, focusing on the repair and strengthening of reinforced concrete structures: A Review.
    • Authors: MR Givkashi, F Moodi
    • Year: 2022
  • Investigation of Affecting Factors on Drying Shrinkage and Compressive Strength of Slag Geopolymer Mortar Mixture.
    • Authors: E Riahi Dehkordi, F Moodi, MR GivKashi, AA Ramezanianpour
    • Year: 2023

Bankim Chandra Ray – New Structural Materials – Best Researcher Award

Bankim Chandra Ray - New Structural Materials - Best Researcher Award

National Institute of Technology - India

AUTHOR PROFILE

GOOGLE SCHOLAR

PROFESSIONAL BACKGROUND

Dr. Bankim Chandra Ray holds the position of Professor in the Department of Metallurgical and Materials Engineering at National Institute of Technology, Rourkela, India. With over 33 years of teaching experience at this premier institute, his research focuses on the environmental impact on FRP composites, particularly exploring mechanistic origins of damage phenomena and the synthesis of polymer nanocomposites under ultra-low temperatures using sono-electro-chemical principles.

RESEARCH EXPERTISE AND CONTRIBUTIONS

His scholarly work spans diverse areas including solidification behavior of Al-Si alloys, micro-examinations of interfaces in metal matrix systems, and computer modeling of phase transformations in ferrous materials. Notably, he investigates the role of carbon nanotubes in enhancing the low-temperature performance of FRP nano-composites. Dr. Ray has authored 247 scientific papers, with 146 published in international journals, and serves as a regular reviewer for high-impact journals in composites and materials science.

ACADEMIC LEADERSHIP AND INSTITUTIONAL ROLES

Throughout his career, Dr. Ray has held various leadership positions at NIT Rourkela, including Dean of Faculty Welfare, Head of the Department of Metallurgical and Materials Engineering, and currently as a Professor HAG. He also serves as Technical Advisor to TATA Steel New Materials Business and Editor of Transactions of the Indian Institute of Metals (TIIM) published by Springer. He coordinates multi-crore integrated Research and Development proposals, notably establishing the Steel Technology Centre at NIT Rourkela.

RECOGNITIONS AND ACHIEVEMENTS

Dr. Ray’s contributions have earned him global recognition, being listed among the world’s top 2% scientists consecutively in 2020 and 2021 by Stanford University. He has been appointed Editor of TIIM and has chaired significant workshops and seminars on FRP composites. His keynote lectures on environmental durability and mechanical behavior of composites have made substantial impacts in both academic and industrial circles.

PROFESSIONAL MEMBERSHIPS AND SERVICE

Active in professional societies, Dr. Ray holds memberships in Indian Institute of Metals, The Institute of Engineers (India), The Indian Institute of Chemical Engineers, The Computer Society of India, and The Indian Society of Technical Education. He contributes extensively to academic journals as Editor-in-Chief and advisory board member, furthering the discourse in manufacturing, material science, and metallurgical engineering.

NOTABLE PUBLICATION

Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: An assessment of the influence of functional groups 2019 (116)

Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: An emphasis on graphene oxide content 2017 (113)

Effect of post-curing on thermal and mechanical behavior of GFRP composites 2015 (135)

Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content 2016 (179)

Iftekhair Bashar – Concrete – Best Researcher Award

Iftekhair Bashar - Concrete - Best Researcher Award

The University of Adelaide - Australia

AUTHOR PROFILE

Scopus

EARLY ACADEMIC PURSUITS

Iftekhair Bashar's academic journey began with a Bachelor of Science in Civil Engineering from Khulna University of Engineering and Technology, Bangladesh. He further pursued Master's and Ph.D. degrees, specializing in Structural and Materials Engineering, from the University of Malaya, Malaysia, and the University of Adelaide, Australia, respectively.

PROFESSIONAL ENDEAVORS

Bashar has accumulated extensive experience in the civil engineering field, serving in various capacities as a Structural Engineer, Design Engineer, Project Engineer, and Research Assistant across different organizations in Singapore, Bangladesh, and Australia.

CONTRIBUTIONS AND RESEARCH FOCUS

Bashar's research primarily focuses on concrete materials, with a specific interest in geopolymer concrete, lightweight concrete, and high-performance fibre-reinforced concrete. His contributions include developing environmentally friendly concrete products and investigating the mechanical properties of innovative concrete formulations.

IMPACT AND INFLUENCE

Through his research endeavors, Bashar has contributed to the development of sustainable construction materials and techniques, aiming to reduce the carbon footprint of construction activities. His work has the potential to influence construction practices towards more eco-friendly and efficient solutions.

ACADEMIC CITATIONS

Bashar's research findings have been cited in various academic publications, reflecting the relevance and impact of his work in the field of concrete materials and structural engineering. His contributions contribute to the advancement of knowledge in concrete technology and construction practices.

LEGACY AND FUTURE CONTRIBUTIONS

With patents granted and applications under substantial examination for innovative concrete compositions and construction methods, Bashar's legacy lies in his contributions to sustainable and efficient construction practices. His ongoing research and professional endeavors aim to further enhance the durability, performance, and environmental sustainability of concrete materials and structures.

NOTABLE PUBLICATIONS

Pull-out creep of hooked-end fibre embedded in ultra-high-performance concrete.  2023 (3)