Sukarman Sukarman | Materials Science and Engineering | Best Researcher Award

Mr . Sukarman Sukarman | Materials Science and Engineering | Best Researcher Award

Universitas Buana Perjuangan Karawang , Indonesia

Sukarman, a lecturer at Universitas Buana Perjuangan Karawang and a Ph.D. candidate in Mechanical Engineering, is a promising researcher with a strong focus on nanomaterials, nanofluids, and thermal-fluid sciences. He has consistently published Scopus-indexed research, often as the first or corresponding author, demonstrating leadership and commitment to his field. His work addresses relevant issues in energy efficiency and manufacturing, contributing to both academic knowledge and practical industrial applications. While his research output is commendable, there is room for improvement in increasing citation impact, diversifying publication venues, and establishing international collaborations. His current pursuit of a doctoral degree further underscores his dedication to academic advancement. Overall, Sukarman’s research performance, publication consistency, and focus on emerging engineering topics make him a strong candidate for the Best Researcher Award, particularly at the national or institutional level, with significant potential for future growth and wider academic impact.

PROFESSIONAL PROFILE

EDUCATION🎓

Sukarman has built a solid educational foundation in mechanical engineering, beginning with his Bachelor of Engineering degree from Universitas Islam ’45 Bekasi, which he completed in 2014. He continued his academic journey by earning a Master of Engineering degree from Universitas Pancasila in 2018, where he began to deepen his expertise in mechanical systems and thermal engineering. Currently, he is pursuing a Ph.D. in Mechanical Engineering at Universitas Sebelas Maret, Surakarta, further advancing his specialization in nanomaterials, nanofluids, and energy-efficient technologies. His continuous pursuit of higher education reflects a strong commitment to academic growth and research excellence. Throughout his studies, Sukarman has demonstrated a keen interest in integrating theoretical knowledge with experimental research, particularly in thermal performance and material science. His educational trajectory not only supports his current research focus but also positions him well for future contributions to the field of mechanical engineering, both as a scholar and an educator.

PROFESSIONAL EXPERIENCE📝

Sukarman serves as a lecturer in the Department of Mechanical Engineering at Universitas Buana Perjuangan Karawang, where he plays a key role in teaching, research, and academic development. His professional journey reflects a strong dedication to both education and research, particularly in the areas of nanomaterials, thermal systems, and manufacturing processes. In addition to his teaching responsibilities, he actively supervises student projects and contributes to curriculum enhancement within his department. Sukarman has successfully integrated his research interests into his academic role, publishing multiple Scopus-indexed papers and leading several studies as the first or corresponding author. His hands-on experience in experimental mechanics, coupled with his academic background, allows him to bring real-world engineering challenges into the classroom. His involvement in conferences, journal publications, and applied research initiatives demonstrates a commitment to advancing mechanical engineering both in theory and practice. Sukarman’s professional experience showcases a balanced blend of academic leadership and technical expertise.

RESEARCH INTEREST

Sukarman’s research interests lie at the intersection of advanced materials and thermal-fluid sciences, with a particular focus on nanomaterials, nanofluids, and their applications in mechanical and energy systems. He is deeply engaged in exploring how nanomaterials can enhance the thermal conductivity and efficiency of industrial cooling systems, especially in processes like plastic injection molding and transformer cooling. His work also extends to manufacturing processes, including metal forming and resistance spot welding, where he investigates optimization techniques to improve mechanical performance and energy use. Sukarman is interested in experimental mechanics, applying hands-on testing methods to validate models and improve system designs. His research contributes to solving practical engineering challenges while also advancing theoretical understanding in heat transfer, energy efficiency, and sustainable materials. This blend of applied and experimental research underlines his commitment to innovation in mechanical engineering, making his work relevant to both academic and industrial advancements in energy and manufacturing technologies.

AWARD AND HONOR🏆

While specific awards and honors have not been listed, Sukarman’s growing body of peer-reviewed publications and his active role as a first or corresponding author in multiple Scopus-indexed journals reflect academic recognition and professional respect within his field. His selection as a lead author in research involving advanced nanofluids and mechanical systems optimization demonstrates the trust and acknowledgment he has earned from his academic peers and collaborators. Additionally, his ongoing Ph.D. studies and increasing involvement in high-impact research indicate a trajectory toward greater academic distinction. As a faculty member contributing significantly to research and education, he is well-positioned for future honors, such as best paper awards, research grants, or institutional recognitions. His commitment to high-quality research, innovation in mechanical engineering, and consistent scholarly output mark him as a strong candidate for future accolades, including the Best Researcher Award, as his contributions continue to grow in relevance and impact within the academic and engineering communities.

RESEARCH SKILL🔬

Sukarman possesses strong and diverse research skills that are well-aligned with the demands of modern mechanical engineering. His expertise spans experimental design, data analysis, materials characterization, and process optimization. He demonstrates a solid command of nanomaterials and nanofluids, particularly in enhancing thermal performance for industrial applications. His ability to design and conduct complex experiments—such as investigating heat transfer behavior in customized cooling systems or analyzing mechanical properties in metal forming—shows a high level of technical competence. Sukarman is skilled in using tools such as Taguchi Design of Experiments (DOE) for optimization and various analytical techniques for material and thermal analysis. His multiple first-author publications indicate proficiency in academic writing, literature review, and scientific communication. Furthermore, his collaborative work across projects reflects his ability to work within interdisciplinary teams. These research skills not only support his current projects but also equip him to contribute meaningfully to innovation and applied research in mechanical engineering.

CONCLUSION

Sukarman stands out as an emerging expert in nanomaterials and mechanical engineering research. His career merges academic instruction with experimental discovery, producing practical results that advance both theory and application. He consistently contributes to high-quality research, demonstrating a passion for developing sustainable technologies in energy and materials science. With strong publication credentials and an evolving academic profile, Sukarman is well-positioned to influence next-generation mechanical engineering practices. His pursuit of excellence in research and education ensures a lasting impact on both students and the broader engineering community.

PUBLICATIONS

Enhancing Thermal Conductivity of TiO₂-3%F⁺/MEG-40 Binary Nanofluid for Sustainable Cooling Systems in Plastic Injection Molding Applications

  • Authors: Sukarman, Budi Krisitiawan, Eko Prasetya Budiana, Khoirudin, Amri Abdulah

  • Journal: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

  • Year: 2025

Heat Transfer Characteristic of Al₂O₃ Nanofluid with Naphthenic Transformers Oil as Base Fluid

  • Authors: Khoirudin, Budi Kristiawan, Budi Santoso, Sukarman, Amri Abdulah

  • Journal: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

  • Year: 2025

 

João Grilo | Materials Science and Engineering | Best Researcher Award

Dr. João Grilo | Materials Science and Engineering | Best Researcher Award

Researcher at Universidade de Aveiro, Portugal

João Paulo de Freitas Grilo is a dedicated researcher in Materials Science and Engineering, specializing in ceramics and electrochemical materials. He earned his Ph.D. in Materials Science and Engineering from the University of Aveiro in 2019. With a robust academic background, he has actively contributed to the scientific community through extensive research, numerous publications, and collaborative projects. Currently, he serves as a researcher at the University of Aveiro, focusing on ionic conductors, solid oxide cells, and composite materials. His work has significantly impacted the field of engineering and technology, particularly in advancing material properties for energy applications.

Profile

Orcid

Education

João Paulo de Freitas Grilo has an extensive academic background in materials engineering. He completed his Ph.D. in Materials Science and Engineering in 2019 at the University of Aveiro. Prior to this, he earned a Master’s degree in Materials Engineering from the Federal University of Rio Grande do Norte (UFRN) in 2015. His undergraduate studies in Materials Engineering were also conducted at UFRN, where he graduated in 2013. Additionally, he obtained a Bachelor’s degree as an Electrical Technician from the Institute of Federal Education, Science, and Technology of Rio Grande do Norte in 2009. His education provided a strong foundation for his research in materials science and engineering, with a particular focus on ceramics and electrochemical applications.

Experience

João Paulo de Freitas Grilo has accumulated a wealth of experience in both research and academic environments. As a researcher at the University of Aveiro, he has been deeply involved in various scientific investigations and technological advancements. His contributions include co-supervising Ph.D. theses and MSc dissertations, demonstrating his role in mentoring and developing the next generation of scientists. He has participated in multiple research projects, assuming roles as a researcher, Ph.D. fellow, and supervisor. His expertise extends to organizing academic events and collaborating with international teams to advance the understanding of solid-state ionic conductors and mixed conductors.

Research Interests

His primary research interests lie in the field of engineering and technology, specifically in materials engineering. His work focuses on ceramics, solid oxide cells, and grain boundary engineering. He has explored ionic and mixed conductors, emphasizing the development of materials for energy applications, including fuel cells and electrochemical devices. His studies also delve into processing techniques and the impact of microstructures on electrical properties. Through his research, he aims to enhance material performance, efficiency, and durability in energy conversion systems. His investigations are instrumental in developing innovative materials for sustainable energy solutions.

Awards

João Paulo de Freitas Grilo has received recognition for his contributions to materials science and engineering. His work has been acknowledged through awards and nominations in prestigious conferences and research institutions. His dedication to advancing ceramics and electrochemical materials has earned him positions in significant scientific projects, reflecting the impact of his research on the scientific community. His contributions to solid oxide fuel cells and composite electrolytes have been widely recognized, making him a leading figure in his area of expertise.

Publications

João Paulo de Freitas Grilo has authored numerous publications in high-impact journals, contributing significantly to the field of materials science. Some of his key publications include:

Tidei, H. J., Yang, T., & Grilo, J. P. F. (2025). “Role of microstructure on the electrical properties of ceria-based composites.” International Journal of Hydrogen Energy.

Melo, K. P. V., Araújo, A. J. M., Grilo, J. P. F., et al. (2024). “Understanding the oxygen reduction reaction of one-dimensional Ca3Co2O6 cathodes for SOFC.” International Journal of Hydrogen Energy.

Starykevich, M., Rondão, A. I. B., Grilo, J. P. F., & Marques, F. M. B. (2023). “Tuning of phase content, microstructure, and thermal expansion of MgPSZ.” Ceramics International.

Araújo, A. J. M., Loureiro, F. J. A., Grilo, J. P. F., et al. (2022). “A high-performance oxygen electrode for solid oxide cells: Compositional optimization of barium cobaltite-based composites.” Journal of Alloys and Compounds.

Rondão, A. I. B., Grilo, J. P. F., Starykevich, M., & Marques, F. M. B. (2022). “Dilatometric inspection of phase changes in Mg-PSZ.” Thermochimica Acta.

Grilo, J. P. F., Jamale, A., Starykevich, M., et al. (2022). “Role of salts on the electrical performance of ceria-based electrolytes: An overview.” Frontiers in Materials.

Garcia, M. F. L., Araújo, A. J. M., Raimundo, R. A., et al. (2021). “Electrical properties of Ca-doped ceria electrolytes prepared by proteic sol-gel route and by solid-state reaction using mollusk shells.” International Journal of Hydrogen Energy.

Conclusion

João Paulo de Freitas Grilo is a prominent researcher in materials science, specializing in ceramics and electrochemical applications. With a solid academic background, extensive research experience, and numerous high-impact publications, he has significantly contributed to advancements in solid oxide fuel cells and composite electrolytes. His work continues to influence the scientific community, paving the way for innovative materials in energy conversion and storage applications. His dedication and expertise make him a valuable asset in the field of materials engineering.