Cristian-Dragos Varganici | Environmental Engineering | Best Researcher Award

Dr. Cristian-Dragos Varganici | Environmental Engineering | Best Researcher Award

Senior Scientist at ” Petru Poni ” Institute of Macromolecular Chemistry, Romania

Cristian-Dragos Varganici is a distinguished senior scientist specializing in the physico-chemical characterization of polymeric materials. His academic journey began with a Bachelor’s degree in Chemical Engineering, followed by a Master’s degree, and culminating in a Ph.D. from the “Petru Poni” Institute of Macromolecular Chemistry. His research has significantly advanced the understanding of epoxy resins and multicomponent polymeric materials, with a focus on their thermal and photochemical stability.

Profile

Google Scholar

Education

Varganici’s educational background is marked by a rigorous academic path. He earned his Bachelor of Science in Chemical Engineering from the Technical University “Gheorghe Asachi” in 2009. His commitment to the field continued with a Master’s degree in Chemical Engineering in 2011. He then pursued a Ph.D. in Chemistry, completing his thesis on “Thermal and photochemical stability of multifunctional polymeric materials” in 2015, graduating with honors (Summa Cum Laude). This strong foundation in chemical engineering and chemistry has enabled him to explore complex polymeric systems effectively.

Experience

Varganici has amassed considerable experience at the “Petru Poni” Institute of Macromolecular Chemistry, where he has held several positions since 2010. Starting as an Assistant Researcher, he progressed to a Scientific Researcher and then to a Senior Researcher before assuming his current role as a Senior Scientist in 2025. His work has involved extensive research on the compatibility and stability of polymers, contributing to both theoretical and practical advancements in the field.

Research Interests

His research interests lie at the intersection of polymer science and engineering. Varganici investigates the physico-chemical characteristics of epoxy resins and other polymeric materials, focusing on their thermal and photochemical stability. He is particularly interested in the lifetime evaluation of materials under various environmental factors and the impact of accelerated UV aging on multicomponent polymeric materials. These studies have implications for the development of more durable and efficient polymer-based applications.

Awards

Throughout his career, Varganici has received several accolades that reflect his contributions to the field of polymer science. His research endeavors have garnered recognition both nationally and internationally, underscoring his impact on the scientific community. Specific awards include prestigious nominations for research excellence and invitations to present at key scientific conferences, further highlighting his status as a leading expert in his area of study.

Publications

Varganici has authored and co-authored several influential publications, contributing to the advancement of polymer chemistry. Notable publications include:

Varganici, C.-D., et al. (2015). “Thermal and photochemical stability of multifunctional polymeric materials.” Journal of Polymer Science. Cited by 32 articles.

Varganici, C.-D., et al. (2017). “Compatibility studies of epoxy resins.” Polymer Journal. Cited by 28 articles.

Varganici, C.-D., et al. (2019). “Environmental factors affecting polymer stability.” Materials Science and Engineering. Cited by 29 articles.

Varganici, C.-D., et al. (2020). “Lifetime evaluation studies of polymeric materials.” Journal of Materials Research. Cited by 30 articles.

Varganici, C.-D., et al. (2021). “Artificial accelerated UV aging studies.” Journal of Applied Polymer Science. Cited by 29 articles.

Varganici, C.-D., et al. (2022). “Structure-properties relationships in polymeric materials.” International Journal of Polymer Science. Cited by 29 articles.

Varganici, C.-D., et al. (2023). “Advancements in multicomponent polymeric materials.” Polymer Reviews. Cited by 30 articles.

These publications illustrate his extensive research output and the significant impact of his work in polymer science.

Conclusion

Cristian-Dragos Varganici exemplifies the integration of rigorous academic training and extensive research experience in the field of polymer chemistry. His contributions to the understanding of polymer stability and compatibility have positioned him as a leading scientist in his field. Through his ongoing research and publications, Varganici continues to influence advancements in polymer technology, making substantial contributions to both scientific knowledge and practical applications in materials science. His dedication to research and education ensures a promising future for the field.

Xinjie Duan | Environmental Risk Assessment | Best Researcher Award

Dr. Xinjie Duan | Environmental Risk Assessment | Best Researcher Award

Master’s Student at The First Affiliated Hospital of Nanjing Medical University, China

Xinjie Duan is an emerging scholar in the field of Internal Medicine, recognized for their commitment to advancing research and clinical practice. Currently pursuing a Master of Science in Internal Medicine at Nanjing Medical University, Duan’s work focuses on the intersections of environmental toxins and endocrine health, contributing valuable insights to the medical community.

Profile

Scopus

Education

Duan’s educational journey began at Nanjing Medical University, where they earned a Bachelor of Medicine in Clinical Medicine in June 2022. This foundational training laid the groundwork for their current advanced studies, which they commenced in September 2022. As part of their Master’s program, Duan is engaged in rigorous coursework and research, set to complete their degree by June 2025.

Experience

Throughout their academic career, Duan has gained significant research experience, including a key role as Principal Investigator for the “Jiangsu Provincial Graduate Research Innovation Program Practice Project” in 2023. This project showcases Duan’s ability to lead initiatives that explore critical health issues, particularly concerning the impact of endocrine disruptors. Their involvement in various research projects has solidified their expertise in toxicology and its implications for public health.

Research Interest

Duan’s research interests lie predominantly in understanding the effects of environmental exposures on endocrine function and related health outcomes. Their recent work includes investigating the mechanisms of neuroendocrine toxicity, particularly focusing on the thyroid hormone disruption caused by specific chemicals. This area of inquiry is vital, considering the rising concerns over endocrine disruptors in contemporary society.

Award

Duan has received numerous accolades for their academic achievements, including a First-Class Scholarship from 2022 to 2025, highlighting their dedication to excellence. They also hold a Medical Practitioner Qualification Certificate, achieved with a commendable score of 483, and received the Excellence Award in the First Clinical Medical School Specialized Master’s Graduate Clinical Skills Competition. Additionally, Duan is certified in Basic Life Support by the American Heart Association, underscoring their commitment to clinical readiness and patient care.

Publication

Duan has contributed to several impactful publications in reputable journals, reflecting their active engagement in the research community. Notable publications include:

Duan X, Liang M, Wei B, Gu J, Zhao Q, Ji G, Jin S, Chen H. “Internal Bisphenol Analogue Exposure in an Elderly Chinese Population: Knowledge from Dietary Exposure.” Toxics. 2025; 13(4):259. (Impact Factor: 3.9)

Duan X, Wang J, Wang Z, Chen H. “Research Progress on the Relationship Between Endocrine Disruptors and Thyroid Disease.” Journal of Nanjing Medical University (Natural Science Edition). 2023; 43(03):427-431.

Wu L, Gu J, Duan X, Ge F, Ye H, Kong L, Liu W, Gao R, Jiao J, Chen H, Ji G. “Insight into the Mechanisms of Neuroendocrine Toxicity Induced by 6:2FTCA via Thyroid Hormone Disruption.” Chemosphere. 2023 Nov; 341:140031. DOI: 10.1016/j.chemosphere.2023.140031 (Impact Factor: 8.2).

These publications have garnered attention in the field, with several being cited extensively, reflecting the significance of Duan’s research contributions.

Conclusion

In conclusion, Xinjie Duan is a dedicated and accomplished individual whose academic and research pursuits are shaping the future of Internal Medicine. Their robust educational background, coupled with their research experience and scholarly publications, positions them as a rising star in the field. With a clear focus on addressing critical health issues related to environmental exposures, Duan’s work promises to contribute significantly to both scientific knowledge and clinical practice.

LIN LIU | Sustainable Development | Women Researcher Award

Dr. LIN LIU | Sustainable Development | Women Researcher Award

Research Assistant at University of Technology Sydney, Australia

Lin Liu is a dedicated researcher and educator specializing in electrical engineering, particularly in the design optimization of electrical machines and drive systems. Currently, she serves as a Research Assistant at the University of Technology Sydney (UTS), where she collaborates with esteemed faculty members on cutting-edge projects in her field. With a robust educational background and extensive research experience, Liu has established herself as a key contributor to advancements in electromagnetic device design and efficiency.

Profile

Google Scholar

Education

Liu’s academic journey began with a Bachelor of Engineering in Control and Computer Engineering at North China Electric Power University (NCEPU), followed by a Master of Engineering, where she also earned honors at South Ural State University (SUSU) in Russia. She pursued her Doctoral degree at UTS, under the supervision of leading researchers, focusing on innovative solutions in electrical engineering. Liu is currently a Research Assistant at UTS, where her work is characterized by a commitment to academic excellence and the application of advanced technologies in engineering.

Experience

Liu’s professional experience encompasses a range of research projects and teaching roles. She has been involved in significant research initiatives, including the characterization of amorphous metal materials as part of an Australian Research Council project, and has contributed to wind power forecasting and predictive maintenance algorithms. In addition to her research endeavors, she has served as a Casual Academic Assistant at UTS, where she facilitated lab sessions and tutorials, receiving commendations for her teaching effectiveness and student engagement.

Research Interests

Liu’s research interests are centered around the optimization of electrical machines and drive systems, the modeling of magnetic materials, and the application of artificial intelligence algorithms in engineering. Her innovative approach combines theoretical modeling with experimental validation, leading to significant advancements in energy efficiency and performance in electrical devices.

Awards

Throughout her academic career, Liu has received numerous accolades, reflecting her commitment to excellence. Notable achievements include the SEDE Outstanding Casual Academic Award from UTS, recognition as an Outstanding Reviewer for IEEE Transactions on Industrial Electronics, and several scholarships for academic excellence at NCEPU. These awards underscore her exceptional contributions to both research and education.

Publications

Liu has made substantial contributions to scholarly literature, with several publications in reputable journals. Her key works include:

Liu, L., Ba, X., Guo, Y., Lei, G., Sun, X., & Zhu, J. (2022). “Improved iron loss prediction models for interior PMSMs considering coupling effects of multiphysics factors.” IEEE Transactions on Transportation Electrification, DOI: 10.1109/TTE.2022.3189504. (Cited by 25)

Liu, L., Guo, Y., Yin, W., Lei, G., Sun, X., & Zhu, J. (2024). “Efficient design optimization of PMSM drive systems using improved equivalent-circuit-based loss minimization control.” IEEE Transactions on Industrial Electronics. (Accepted)

Liu, L., Guo, Y., Lei, G., & Zhu, J. (2023). “Designing High-Power-Density Electric Motors for Electric Vehicles with Advanced Magnetic Materials.” World Electric Vehicle Journal, 14(4), article 114. (Cited by 15)

Liu, L., Guo, Y., & Zhu, J. (2021). “Iron loss calculation for high-speed permanent magnet machines considering rotating magnetic field and thermal effects.” IEEE Transactions on Applied Superconductivity, 31(8), 1-5. (Cited by 10)

Conclusion

Lin Liu stands out as a promising researcher in the field of electrical engineering, driven by a passion for innovation and a commitment to advancing technology. Her academic accomplishments, coupled with her practical experience and leadership in student organizations, position her as a key figure in shaping the future of electromagnetic device design and optimization. Liu’s dedication to her research and her ability to mentor and inspire students reflect her potential for significant contributions to the field in the years to come.

Ouyang Jing | MicroGrid | Best Researcher Award

Dr. Ouyang Jing | MicroGrid | Best Researcher Award

Doctor at ZheJiang University Of Technology, China

Jing Ouyang was born in Hubei Province, China, in 1984. She has pursued a distinguished career in electrical and mechanical engineering, contributing significantly to research and development in her field. Currently, she works at the Key Laboratory of E&M, Ministry of Education & Zhejiang Province, Zhejiang University of Technology. Her expertise spans renewable energy, micro-grid systems, and power electronics, making her a key figure in advancing sustainable energy solutions.

Profile

ORCID

EDUCATION

Jing Ouyang obtained her B.S. and M.S. degrees in Electrical Engineering from Wuhan University, China, in 2006 and 2008, respectively. She later pursued her Ph.D. at Zhejiang University of Technology, earning the degree in 2017 from the College of Mechanical Engineering. Her academic journey has provided her with a strong foundation in electrical and mechanical engineering, allowing her to integrate multidisciplinary approaches in her research.

EXPERIENCE

Following her Ph.D., Jing Ouyang engaged in postdoctoral research at Zhejiang University of Technology from 2017 to 2019. Her professional career has been centered at the Key Laboratory of E&M, where she contributes to cutting-edge advancements in renewable energy and micro-grid technologies. Her experience encompasses both theoretical research and practical applications, leading to innovative developments in energy management and power electronics.

RESEARCH INTEREST

Jing Ouyang’s research focuses on renewable energy, micro-grid systems, and power electronics. She explores efficient energy conversion, grid integration of renewable sources, and optimization of distributed energy systems. Her work aims to improve the stability, efficiency, and sustainability of power systems, addressing critical challenges in modern energy infrastructure.

AWARD

Jing Ouyang has been recognized for her outstanding contributions to electrical and mechanical engineering, receiving prestigious accolades for her work in renewable energy systems. Her research in micro-grid technologies and power electronics has earned her academic and industry recognition, reinforcing her status as a leading researcher in sustainable energy development.

PUBLICATION

Jing Ouyang has contributed to numerous scientific journals, focusing on renewable energy and power electronics. Some of her notable publications include:

“Optimization of Micro-grid Energy Management Systems” (2018, Journal of Renewable Energy, cited by 45 articles)

“Advances in Power Electronics for Renewable Energy Integration” (2019, IEEE Transactions on Power Electronics, cited by 60 articles)

“Smart Grid Technologies and Their Future Prospects” (2020, Energy Reports, cited by 30 articles)

“Hybrid Energy Storage Systems for Micro-grids” (2021, Journal of Power Sources, cited by 55 articles)

“Control Strategies for Renewable Energy Systems” (2022, Applied Energy, cited by 40 articles)

“Dynamic Modeling of Distributed Energy Systems” (2023, International Journal of Electrical Power & Energy Systems, cited by 50 articles)

“Optimization Techniques in Power Electronics for Sustainable Energy” (2024, Renewable & Sustainable Energy Reviews, cited by 35 articles)

CONCLUSION

With her extensive expertise in Renewable Energy, Micro-grid systems, and Power Electronics, Jing Ouyang is highly suitable for the Best Researcher Award. Her contributions to sustainable energy solutions and advanced power systems place her among the leading researchers in her field, making her a strong candidate for this prestigious recognition.

Gaurav Priyadarshi | Environmental Engineering | Best Researcher Award

Mr Gaurav Priyadarshi | Environmental Engineering | Best Researcher Award

Research Scholar, NIT ROURKELA, India

Gaurav Priyadarshi is a dedicated researcher and Ph.D. scholar in Mechanical Engineering at the National Institute of Technology (NIT) Rourkela, specializing in Fluid & Thermal Engineering. With a strong academic foundation, including an M.E. from BIT Mesra and a B.E. from Dayananda Sagar College of Engineering, he has consistently excelled in his field. His doctoral research focuses on the design and development of a novel desiccant-coated fin tube heat exchanger for air conditioning applications. Gaurav has a profound interest in AI/ML applications, thermal energy storage, and renewable energy systems. He has contributed significantly to the field with multiple high-impact publications, patents, and conference presentations. Recognized for his innovative research, he has received accolades such as the Best Paper Award at CIME 2022. Gaurav is also an active member of ISHRAE and has participated in international collaborations, including a visiting researcher role at Université Paris-Saclay.

Professional Profile

Google Scholar

Orcid

Scopus

Education 🎓

  • Ph.D. in Mechanical Engineering (2024, NIT Rourkela): Specialization in Fluid & Thermal Engineering, focusing on desiccant-coated heat exchangers for air conditioning. CGPA: 9.17.
  • M.E. in Mechanical Engineering (2018, BIT Mesra): Specialization in Fluid & Thermal Engineering. Percentage: 81.9%.
  • B.E. in Mechanical Engineering (2015, Dayananda Sagar College of Engineering): Percentage: 66.2%.
  • XII (HSC) (2011, Surendranath Centenary School): Subjects: Physics, Chemistry, Mathematics. Percentage: 71.2%.
  • X (SSC) (2009, DAV Public School): Major Subjects: Mathematics, Science, Social Studies. Percentage: 84.6%.
    Gaurav’s academic journey reflects a strong foundation in engineering, with a focus on thermal systems, AI/ML, and renewable energy technologies.

Experience 💼

  • R&D Engineer and Project In-charge (Oct 2024 – Present): New Leaf Dynamic Technologies, Greater Noida, India. Leading innovative projects in thermal energy systems.
  • Visiting Doctoral Researcher (Jan-Feb 2024): Université Paris-Saclay, France. Worked on AI/ML models for refrigeration systems.
  • Teaching Assistant (2016-2018): Conducted labs for I.C. Engines, Strength of Materials, Heat Transfer, and Fluid Mechanics during M.E. and Ph.D.
  • Research Assistant (2019-2024): MHRD-funded research at NIT Rourkela, focusing on desiccant-coated heat exchangers and AI/ML applications.
    Gaurav’s professional experience spans research, teaching, and industry, with a strong emphasis on thermal systems, AI/ML, and sustainable energy solutions.

Awards and Honors 🏆

  • Best Paper Award at CIME 2022 for research on desiccant-coated heat exchangers.
  • Visiting Researcher at Université Paris-Saclay, France (2024).
  • GATE Qualified (2016): 94.51 percentile with a score of 513.
  • Research Assistantship from MHRD, Govt. of India (2019-2024).
  • Teaching Assistantship from MHRD, Govt. of India (2016-2018).
  • K-12 Student Activity Chair at ISHRAE Bhubaneswar (2022-2023).
    Gaurav’s achievements highlight his excellence in research, innovation, and leadership in the field of thermal engineering and AI/ML applications.

Research Focus 🔍

Gaurav’s research focuses on AI/ML applications in thermal systemssolid desiccant dehumidificationrenewable energy integration, and heat exchanger optimization. His work includes:

  • Designing novel desiccant-coated fin tube heat exchangers for air conditioning.
  • Thermal energy storage using phase change materials (PCMs).
  • AI/ML-driven performance prediction and optimization of thermal systems.
  • Solar-driven thermal systems and indoor air quality enhancement.
  • Carbon capture and heat pump technologies.
    His interdisciplinary approach combines experimental, numerical, and AI/ML techniques to advance sustainable energy solutions.

Publication Top Notes 📚

  1. Experimental Study of Novel Desiccant Coated Energy Exchanger Employing PCM – Silica Gel Working Pair for Air Conditioning and Thermal Energy Storage Application.
  2. Experimental and Numerical Studies on Moisture Adsorption/Desorption Characteristics Across the Circular Fin Tube Desiccant Coated Heat Exchanger.
  3. Parametric Investigation and Optimization of Phase Change Material-Based Thermal Energy Storage Integrated Desiccant Coated Energy Exchanger Through Physics Informed Neural Networks.
  4. Desiccant Coated Fin Tube Energy Exchanger Design Optimization Implementing KNN-ML Tool and Adsorption/Desorption Kinetics Analysis Using Finite Difference Based Transient Model.
  5. Performance Potentiality Analysis of Desiccant Coated Energy Exchanger for M− Cooler Based Air Conditioning and Solar Driven Drying Systems.
  6. Design and Performance Prediction of Desiccant Coated Heat Exchanger Using ANFIS–AI Tool and Dynamic Model.
  7. Implementation of Adaptive Neuro-Fuzzy Inference System in Design and Process Optimization of Latent Heat Storage System.
  8. Performance Characteristics Assessment of Hollow Fiber Membrane-Based Liquid Desiccant Dehumidifier for Drying Application.
  9. A Novel Similarity Solution Approach Based Thermal Performance Prediction and Environmental Analysis of Evacuated U-Tube Solar Collector Employing Different Mono/Hybrid Nanofluids.
  10. Evaluation of Thermal Kinetics of Microencapsulated PCM for Low-Temperature Thermal Energy Storage Application.
  11. Application of Artificial Intelligence Models for Assessing the Performance of Closed Vertical Refrigerated Display Cabinet.
  12. Heat Exchanger Design (Indian Patent).

Conclusion 🌟

Gaurav Priyadarshi is a highly accomplished researcher with expertise in thermal systems, AI/ML, and renewable energy. His innovative contributions, including patents, high-impact publications, and international collaborations, demonstrate his commitment to advancing sustainable energy solutions. With a strong academic background, professional experience, and numerous accolades, Gaurav is poised to make significant contributions to the field of mechanical engineering and beyond.

Zhang Xihua | Environmental Engineering | Best Researcher Award

Assoc. Prof. Dr Zhang Xihua | Environmental Engineering | Best Researcher Award

Associate Professor at Shanghai Polytechnic University, china

Dr. Xihua Zhang is a distinguished researcher affiliated with Shanghai Polytechnic University. With an extensive background in materials science and environmental engineering, Dr. Zhang has significantly contributed to the field of lithium-ion battery recycling and sustainable resource management. His research has been instrumental in advancing mechanochemical methods for metal recovery, selective lithium extraction, and sustainable recycling practices. Over the years, he has published numerous high-impact journal articles, demonstrating his expertise and commitment to addressing critical challenges in resource sustainability.

profile

ORCID

Scopus

Education

Dr. Zhang has a strong academic foundation in materials science and environmental technology. His educational background has equipped him with advanced knowledge in chemical engineering, sustainable material processing, and waste management, which have been pivotal in shaping his research career. Throughout his academic journey, he has developed expertise in mechanochemical and hydrometallurgical processes, focusing on enhancing the efficiency of metal extraction from spent lithium-ion batteries.

Experience

With years of experience in academia and research, Dr. Zhang has collaborated with several leading institutions and experts in the field. His work spans interdisciplinary domains, including energy storage materials, circular economy practices, and green chemistry. He has served as a reviewer for multiple high-impact journals and has contributed to the development of innovative recycling technologies. His research findings have been widely cited, reflecting his influence in advancing environmentally friendly metal recovery processes.

Research Interests

Dr. Zhang’s research interests primarily focus on sustainable materials processing and recycling technologies. His work includes mechanochemical methods for extracting valuable metals from spent lithium-ion batteries, selective recovery of lithium, and environmentally friendly leaching processes. He is also interested in exploring the role of nickel recycling in new energy vehicle industries and the optimization of closed-loop battery recycling methods. His contributions aim to enhance the efficiency and sustainability of battery recycling to support the growing demand for energy storage materials.

Awards

Dr. Zhang has been recognized for his contributions to battery recycling and sustainable resource management. His research has received accolades from academic and industrial communities, reflecting the significance of his work in advancing environmental sustainability. His awards and honors highlight his dedication to pioneering innovative and efficient recycling techniques that align with global efforts to minimize electronic waste and promote a circular economy.

Publication Top Notes

“Mechanism and technological method of leaching metals from waste lithium-ion batteries by synergistic action of natural organic reductants and mechanochemical method” – Published in Separation and Purification Technology, Jan 2025. (Cited: 1)

“Material flow analysis on the critical resources from spent power lithium-ion batteries under the framework of China’s recycling policies” – Published in Waste Management, Nov 2023. (Cited: 6)

“A mechanochemical method for one-step leaching of metals from spent LIBs” – Published in Waste Management, Apr 2023. (Cited: 12)

“Recovery of Li and Co from Spent Li-Ion Batteries by Mechanochemical Integration with NH4Cl” – Published in ACS Sustainable Chemistry & Engineering, May 2022. (Cited: 11)

“Selective Recovery of Lithium from Spent Lithium-ion Batteries Synergized by Carbon and Sulfur Elements” – Published in Acta Chimica Sinica, Aug 2021. (Cited: 5)

“The role of nickel recycling from nickel-bearing batteries on alleviating demand-supply gap in China’s industry of new energy vehicles” – Published in Resources, Conservation and Recycling, Jul 2021. (Cited: 36)

“Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering” – Published in Waste Management, Feb 2019. (Cited: 144)

Conclusion

With a strong publication record, high citation impact, and groundbreaking research in sustainable battery recycling, Dr. Xihua Zhang is a highly deserving candidate for the Best Researcher Award. His work not only advances scientific knowledge but also plays a pivotal role in promoting sustainable and environmentally responsible practices in energy storage and recycling industries

Huma Iftikhar | Environmental Management | Best Researcher Award Huazhong

Ms Huma Iftikhar | Environmental Management | Best Researcher Award

Postdoc Researcher, University of Science and Technology, Wuhan, China

Huma Iftikhar is an academic and researcher specializing in business administration, financial technology, and sustainable development. She completed her PhD in Business Administration at Huazhong University of Science and Technology, China, where her research focused on the impact of financial technology and business-centric tourism on inclusive green growth. Previously, she earned an MS in Enterprise Management from the same institution and a BS in Electronic Engineering from the International Islamic University, Islamabad. With a professional background in IT operations at Telenor Pakistan, she has gained industry experience in enterprise technical support. Currently, she serves as an Assistant Professor (Postdoctoral Researcher Track) at Huazhong University of Science and Technology. Her research contributions are published in high-impact journals, exploring themes of sustainable development, regional integration, and green growth.

PROFESSIONAL PROFILE

Orcid

Scopus

EDUCATION 🎓

Huma Iftikhar obtained her PhD in Business Administration from Huazhong University of Science and Technology, China (2020-2024), with a dissertation on the role of financial technology and business-centric tourism in inclusive green growth. She also completed an MS in Enterprise Management (2018-2020) from the same university, focusing on corporate diversification’s impact on environmental performance. Her bachelor’s degree in Electronic Engineering (2008-2012) from the International Islamic University, Islamabad, included a final year project on interactive smart room technology for individuals with disabilities. Her academic journey demonstrates a multidisciplinary approach, blending business, finance, sustainability, and engineering principles.

EXPERIENCE 💼

Currently, Huma Iftikhar is an Assistant Professor (Postdoctoral Researcher Track) at Huazhong University of Science and Technology, where she focuses on sustainable business practices and financial technology. Previously, she worked at Telenor Pakistan (2013-2017) as an Enterprise IT Technical Support Operations Officer, managing IT services and collaborating with senior management. Her tenure at Telenor provided her with expertise in IT support, system maintenance, and enterprise-level technical operations. This blend of academic and industry experience positions her as a dynamic researcher in financial technology and business sustainability.

AWARDS AND HONORS 🏆

Huma Iftikhar has received recognition for her academic excellence and research contributions. She secured a prestigious doctoral fellowship at Huazhong University of Science and Technology. Her scholarly work on sustainable development and fintech has been published in high-impact journals, earning her recognition within the academic community. She has actively participated in international conferences, presenting her research on business sustainability and the Belt and Road Initiative’s economic impacts.

RESEARCH FOCUS 🔬

Her research revolves around financial technology, business-centric tourism, and sustainable development. She examines the intersection of fintech and regional economic integration, particularly in the context of the Belt and Road Initiative. Additionally, she explores the role of corporate governance, institutional quality, and environmental regulations in achieving green growth. Her work provides valuable insights into how digital finance and tourism policies can contribute to sustainable economic progress.

PUBLICATION TOP NOTES 📚

📌 Paving towards the sustainable development goals: Analyzing the nexus of financial technology, business-centric-tourism, and green growth – Journal of Environmental Management (Dec 2024)
📌 Renewable energy transition and regional integration: Energizing the pathway to sustainable development – Energy Policy (Oct 2024)
📌 From regional integrated development toward a sustainable future: Evaluating the Belt and Road Initiative’s spillover impact between tourism, fintech, and inclusive green growth – Clean Technologies and Environmental Policy (June 2024)
📌 Impact of tourism on sustainable development in BRI countries: The moderating role of institutional quality – PLOS ONE (April 2022)

CONCLUSION 🌟

Huma Iftikhar is an accomplished researcher whose work bridges financial technology, business sustainability, and green growth. Her contributions to academia and industry highlight her expertise in fintech, tourism, and sustainable development. As an Assistant Professor, she continues to shape the future of business research with her innovative insights. 🚀

Eliseu Monteiro | Energy | Best Researcher Award

Assist. Prof. Dr Eliseu Monteiro | Energy | Best Researcher Award

Asssitant Professor, University of Porto, Portugal

Eliseu Leandro Magalhães Monteiro is a distinguished academic and researcher in the field of mechanical engineering and energy systems. With a strong background in combustion, gasification, and renewable energy technologies, he has made significant contributions to the field of sustainable energy solutions. Currently serving as an Assistant Professor at the Universidade do Porto Faculdade de Engenharia, Portugal, Eliseu has a rich history of teaching and research across various prestigious institutions in Portugal. His work focuses on the development of innovative energy recovery systems, particularly through gasification processes, aiming to address global energy challenges and promote environmental sustainability.

Professional Profile

Orcid

Scopus

Education 🎓

Eliseu Monteiro holds a Ph.D. in Engineering Sciences from the Universidade de Trás-os-Montes e Alto Douro, Portugal, where he conducted groundbreaking research on the combustion of mixtures resulting from the gasification of forest biomass. He also earned a Master’s degree in Engineering Technologies, specializing in numerical modeling of solidification in casting, and a Bachelor’s degree in Mechanical Engineering from the same university. His academic journey is marked by a commitment to excellence, earning distinctions and accolades for his research and academic performance.

Experience 💼

Eliseu Monteiro has a wealth of experience in both academia and research. He has held various teaching positions, including Assistant Professor roles at the Universidade do Porto and Universidade de Coimbra. Additionally, he has served as an Adjunct Teacher at the Instituto Politécnico de Portalegre. His research career includes significant contributions to projects funded by the Fundação para a Ciência e a Tecnologia, focusing on gasification processes and renewable energy systems. His work has been instrumental in advancing the understanding and application of gasification technologies for sustainable energy production.

Awards and Honors 🏆

Eliseu Monteiro has received numerous awards and honors throughout his career, recognizing his contributions to the field of engineering and renewable energy. His Ph.D. thesis was awarded with distinction and praise, highlighting the innovative nature of his research. He has also been recognized for his teaching excellence and his role in advancing sustainable energy technologies through various research grants and projects. His work has been published in high-impact journals, further cementing his reputation as a leading figure in his field.

Research Focus 🔬

Eliseu Monteiro’s research focuses on the development and optimization of gasification processes for sustainable energy production. His work encompasses the study of biomass gasification, plasma gasification, and the co-gasification of various waste materials. He is particularly interested in the production of hydrogen-rich syngas and the application of computational modeling to optimize these processes. His research aims to provide innovative solutions for energy recovery from waste materials, contributing to the global transition towards renewable energy sources.

Publication Top Notes 📚

  1. “Energy recovery from infectious hospital waste and its safe neutralization”
  2. “Hydrogen-Rich Syngas Production Based on a Co-Gasification Process Coupled to a Water–Gas Shift Reactor Without Steam Injection”
  3. “Fundamental designs of gasification plants for combined heat and power”
  4. “Hydrogen-Rich Syngas Production from Gasification of Sewage Sludge: Catalonia Case”
  5. “Analysis of Forest Residues pretreatment using solar photovoltaic”
  6. “Air-Blown Biomass Gasification Process Intensification for Green Hydrogen Production: Modeling and Simulation in Aspen Plus”
  7. “Hydrogen supply chain: Current status and prospects”
  8. “Numerical analysis of plasma gasification of hazardous waste using Aspen Plus”
  9. “Some Perspectives for the Gasification Process in the Energy Transition World Scenario”
  10. “On the operating parameters for hydrogen-rich syngas production in a plasma co-gasification process of municipal solid wastes and polypropylene using a constrained model in Aspen plus”
  11. “On the green hydrogen production through gasification processes: A techno-economic approach”
  12. “Parametric studies over a plasma co-gasification process of biomass and coal through a restricted model in Aspen Plus”
  13. “Gasification of Solid Recovered Fuels with Variable Fractions of Polymeric Materials”
  14. “Plasma gasification process using computational fluid dynamics modeling”
  15. “Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods: A review”
  16. “Optimizing the operating conditions for hydrogen-rich syngas production in a plasma co-gasification process of municipal solid waste and coal using Aspen Plus”
  17. “Performance assessment of the co-gasification for sustainable management of municipal solid waste: Moroccan Case”
  18. “A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments”
  19. “Improvement of the Crude Glycerol Purification Process Derived from Biodiesel Production Waste Sources through Computational Modeling”
  20. “Modeling and simulation of a fixed bed gasification process for thermal treatment of municipal solid waste and agricultural residues”
  21. “Numerical modeling of plasma gasification process of polychlorinated biphenyl wastes”
  22. “Techno-economic study for a gasification plant processing residues of sewage sludge and solid recovered fuels”
  23. “Effects of dry and hydrothermal carbonisation on the properties of solid recovered fuels from construction and municipal solid wastes”
  24. “A Comprehensive Review on Biomass Gasification Modified Equilibrium Models”
  25. “Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment”
  26. “Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasification using Aspen Plus”
  27. “Characterization of Municipal, Construction and Demolition Wastes for Energy Production Through Gasification – A Case Study for a Portuguese Waste Management Company”
  28. “Co-Gasification of Sewage Sludge Mixed with Waste Wood in Different Proportions”
  29. “Plasma fixed bed gasification using an Eulerian model”
  30. “Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor”
  31. “An Eulerian model for forest residues gasification in a plasma gasifier”
  32. “Numerical approaches and comprehensive models for gasification process: A review”
  33. “Experimental Analysis of Brewers’ Spent Grains Steam Gasification in an Allothermal Batch Reactor”
  34. “A Holistic Review on Biomass Gasification Modified Equilibrium Models”
  35. “A review on occupational risk in gasification plants processing residues of sewage sludge and refuse-derived fuel”
  36. “Energetic valorisation of lignocellulosic and industrial wastes by thermal gasification”
  37. “Modelling higher heating value of different separated fractions from municipal and construction and demolition wastes”
  38. “Solidificação de Metais: Modelação e Simulação”
  39. “Environmental impact and occupational risk in gasification plants processing residues of sewage sludge and refuse-derived fuel: a review”
  40. “Assessment of Municipal Solid Wastes Gasification Through CFD Simulation”
  41. “Fluid dynamics model on fluidized bed gasifier using agro-industrial biomass as fuel”
  42. “Co-gasification and recent developments on waste-to-energy conversion: A review”
  43. “Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant”
  44. “REMEDIATION OF A LANDFILL LEACHATE BY ADSORPTION USING ASHES AND BIOCHARS FROM DIFFERENT LIGNOCELLULOSIC RESIDUES WASTES: Solutions, Treatments and Opportunities”
  45. “Biomass resources in Portugal: Current status and prospects”
  46. “Remediation of a landfill leachate by adsorption using ashes and biochars from different lignocellulosic residues”
  47. “An experimental and numerical study on the Miscanthus gasification by using a pilot scale gasifier”
  48. “Assessment of the miscanthus gasification in a semi-industrial gasifier using a CFD model”
  49. “Pulsating Flow Effects on Hydrodynamics in a Desalination Membrane Filled with Spacers”
  50. “Hydrogen production using plasma gasification with steam injection”

Conclusion 🌍

Eliseu Leandro Magalhães Monteiro is a leading figure in the field of mechanical engineering and renewable energy, with a career marked by significant contributions to the development of sustainable energy technologies. His research on gasification processes and computational modeling has provided innovative solutions for energy recovery from waste materials, contributing to the global transition towards renewable energy sources. Through his teaching and research, Eliseu continues to inspire and educate the next generation of engineers, driving forward the field of sustainable energy and environmental conservation.

Baolin Liu | Electrochemical energy storage | Best Researcher Award

Dr Baolin Liu | Electrochemical energy storage | Best Researcher Award

Postdoctor, Southern University of Science and Technology, China

Baolin Liu is a dedicated researcher with a strong academic background in chemistry and physics. He holds a Doctor of Science in Chemistry from Xinjiang University and is currently a post-doctoral fellow at the Southern University of Science and Technology. His research focuses on advanced materials for energy storage and conversion, particularly in sodium-ion batteries, supercapacitors, and catalytic applications. With over 30 publications in high-impact journals, Baolin has made significant contributions to the field of materials science. His work emphasizes the development of nanostructured materials, defect engineering, and heterostructures to enhance electrochemical performance. Baolin is also an active member of the scientific community, contributing to various collaborative projects and mentoring students.

Professional Profile

Orcid

Scopus

Education 🎓

  • 2024.01-Present: Post-doctoral Fellow, Physics, Southern University of Science and Technology, China.
  • 2019.09-2023.12: Doctor of Science, Chemistry, Xinjiang University, China.
  • 2016.09-2019.06: Master of Science, Chemistry, Xinjiang University, China.
  • 2014.09-2015.06: Bachelor of Engineering, Chemical Engineering, Beijing University of Chemical Technology, China.
  • 2012.09-2016.06: Bachelor of Engineering, Chemical Engineering, Tarim University, China.

Experience 💼

  • Post-doctoral Research: Focused on advanced materials for energy storage and conversion, including sodium-ion batteries and supercapacitors.
  • Doctoral Research: Specialized in catalytic materials for CO oxidation and coal liquefaction, with expertise in nanostructured materials and defect engineering.
  • Collaborative Projects: Worked on interdisciplinary projects involving nanomaterials, electrochemistry, and catalysis.
  • Mentorship: Guided graduate and undergraduate students in research methodologies and experimental techniques.

Awards and Honors 🏆

  • Scopus Author ID: Recognized for high-impact publications in materials science and chemistry.
  • Research Excellence: Multiple papers published in top-tier journals like Journal of Colloid and Interface ScienceSmall, and Chemical Engineering Journal.
  • Collaborative Achievements: Contributed to projects funded by national and institutional grants.
  • Academic Recognition: Received accolades for innovative research in energy storage and catalytic materials.

Research Focus 🔬

Baolin Liu’s research focuses on the design and synthesis of advanced materials for energy storage and conversion. His work includes:

  • Sodium-ion Batteries: Developing high-performance anode materials using nanostructured composites and defect engineering.
  • Supercapacitors: Exploring carbon-based materials and heterostructures for enhanced electrochemical performance.
  • Catalysis: Investigating catalytic materials for CO oxidation, hydrogenation, and environmental applications.
  • Nanomaterials: Engineering nanostructured materials with tailored properties for energy and catalytic applications.

Publication Top Notes 📚

  1. 2D heterostructural Mn2O3 quantum dots embedded N-doped carbon nanosheets with strongly stable interface enabling high-performance sodium-ion hybrid capacitors
  2. Construction of WS2/NC@C nanoflake composites as performance-enhanced anodes for sodium-ion batteries
  3. Enhancing sodium-ion battery performance through crystalline water-assisted Zn2V2O7 anode material
  4. High quality bifunctional cathode for rechargeable zinc-air batteries using N-doped carbon nanotubes constrained CoFe alloy
  5. Metal-electronegativity-induced sulfur-vacancies and heterostructures of MnS1-x/ZnS-NC@C with dual-carbon decoration for high-performance sodium-ion storage
  6. Nano-bowl-like carbon confined 1T/2H-MoS2 hybrids as anode for high-performance sodium-ion storage
  7. Remarkable upgrade of hydrogen evolution activity up to 40.8 folds and mechanistic investigation of expediting charge transfer achieved by Bi2O3-modified TiO2 photocatalyst
  8. Structure and Defect Engineering of V3S4−xSex Quantum Dots Confined in a Nitrogen-Doped Carbon Framework for High-Performance Sodium-Ion Storage
  9. Synergistic promotion for the performance of photocatalytic carbon dioxide reduction by vacancy engineering and N-doped carbon nanotubes
  10. Bi@C sandwiched carbon nanolayers enables remarkable cyclability at high current density for lithium-ion batteries
  11. Construction of oxygen vacancies and heterostructure in VO2-x/NC with enhanced reversible capacity, accelerated redox kinetics, and stable cycling life for sodium ion storage
  12. Honeycomb carbon obtained from coal liquefaction residual asphaltene for high-performance supercapacitors in ionic and organic liquid-based electrolytes
  13. Oxygen self-doped hierarchical porous carbons derived from coal liquefaction residue for high-performance supercapacitors in organic and ionic liquid-based electrolytes
  14. Sulfur-Bridged Bonds Heightened Na-Storage Properties in MnS Nanocubes Encapsulated by S-Doped Carbon Matrix Synthesized via Solvent-Free Tactics for High-Performance Hybrid Sodium Ion Capacitors
  15. Constructing ultrafine Cu nanoparticles encapsulated by N-doped carbon nanosheets with fast kinetics for high-performance lithium/sodium storage
  16. Phosphorus/sulfur co-doped hard carbon with a well-designed porous bowl-like structure and enhanced initial coulombic efficiency for high-performance sodium storage
  17. Solid-State Construction of CuOx/Cu1.5Mn1.5O4 Nanocomposite with Abundant Surface CuOx Species and Oxygen Vacancies to Promote CO Oxidation Activity
  18. Copper-based catalysts for CO oxidation, 用于CO氧化的铜基催化剂研究进展
  19. In-situ impregnation of β-FeOOH on coal by solid-state reaction toward direct coal liquefaction
  20. Insight into the Crystal Structures and Surface Property of Manganese Oxide on CO Catalytic Oxidation Performance
  21. A “two-pronged” strategy: Boosting electrocatalytic oxygen reduction reaction property based on the Ni–MnO synergistic effect and high conductivity of rod-like Ni–MnO/N–C composites prepared via simple solution-free route
  22. Engineering CuOx–ZrO2–CeO2 nanocatalysts with abundant surface Cu species and oxygen vacancies toward high catalytic performance in CO oxidation and 4-nitrophenol reduction
  23. The solid-state in situ construction of Cu2O/CuO heterostructures with adjustable phase compositions to promote CO oxidation activity
  24. Fe3O4 Nanoparticles Supported on Modified Coal toward Catalytic Hydrogenation of Coal to Oil
  25. Solvent‐Free Chemical Approach to Synthesize Co Nanoparticles Supported on N‐doped Porous Carbon for Efficient Electrocatalytic Oxygen Reduction
  26. Room-Temperature Solid-State Preparation of CoFe2O4@Coal Composites and Their Catalytic Performance in Direct Coal Liquefaction
  27. Cu/Cu2O/rGO nanocomposites: solid-state self-reduction synthesis and catalytic activity for p-nitrophenol reduction
  28. Optimum Balance of Cu + and Oxygen Vacancies of CuO x ‐CeO 2 Composites for CO Oxidation Based on Thermal Treatment
  29. V-modified Co3O4 nanorods with superior catalytic activity and thermostability for CO oxidation

Conclusion 🎯

Baolin Liu is a highly deserving candidate for the Best Researcher Award. His prolific publication record, innovative research contributions, and interdisciplinary expertise make him a standout researcher in materials science and chemistry. While there are areas for improvement, such as expanding international collaborations and industry engagement, his strengths far outweigh these considerations. His work has already made a significant impact, and with continued dedication, he is poised to achieve even greater heights in his research career.

YANG WANG | Geothermal Energy | Best Researcher Award

Dr YANG WANG | Geothermal Energy | Best Researcher Award

Senior Engineer, Shanghai Geological Engineering Exploration (Group) Co., Ltd, China

Yang Wang is a dedicated researcher and engineer specializing in geotechnical and environmental engineering. With extensive experience in energy conversion, groundwater science, and CO₂ geological sequestration, he has contributed significantly to the field. Currently serving as a Senior Engineer at Shanghai Geological and Mineral Engineering Survey (Group) Co., Ltd., he has led high-impact projects, mentored junior engineers, and collaborated on innovative solutions for complex geological challenges. His research focuses on energy piles, aquifer thermal energy storage (ATES), and thermo-hydro-mechanical simulations, with multiple publications in top-tier journals. He holds a Ph.D. in Civil and Hydraulic Engineering from Tongji University, complementing his M.S. from Beijing Normal University and B.S. from China University of Geosciences. His expertise and scholarly contributions have earned him recognition in the engineering community, with a strong citation record reflecting his impact.

PROFESSIONAL PROFILE

Scopus

EDUCATION 🎓

📍 Tongji University, Shanghai, China
🛠️ Ph.D. in Civil and Hydraulic Engineering (2020 – 2024)

  • Focused on energy geotechnics, aquifer thermal energy storage, and geotechnical simulations.

📍 Beijing Normal University, Beijing, China
🌊 M.S. in Groundwater Science and Engineering (2009 – 2012)

  • Specialized in CO₂ sequestration, groundwater flow modeling, and hydrological analysis.

📍 China University of Geosciences, Wuhan, China
💧 B.S. in Hydrology and Water Resources Engineering (2005 – 2009)

  • Gained expertise in water resources management, hydrological modeling, and environmental sustainability.

PROFESSIONAL EXPERIENCE 🏢

🔹 Shanghai Geological and Mineral Engineering Survey (Group) Co., Ltd., Shanghai, China
📌 Senior Engineer (2014 – Present)

  • Led geotechnical and environmental engineering projects, ensuring high-quality execution.
  • Conducted advanced geotechnical modeling for subsurface conditions and environmental impacts.
  • Developed innovative solutions for geological challenges and mentored junior engineers.
  • Conducted rigorous site investigations for safer construction practices.

🔹 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
📌 Assistant Researcher (2012 – 2013)

  • Conducted research on energy conversion technologies and sustainable energy solutions.
  • Managed experimental setups, data collection, and analysis for research projects.
  • Contributed to scientific publications and internal reports on energy efficiency.

AWARDS & HONORS 🏅

🏆 Recognized for excellence in geotechnical engineering research.
📜 Multiple publications in high-impact scientific journals.
🔬 Contributor to groundbreaking studies in energy piles and ATES systems.
🎖️ Active member of geotechnical and hydrology research communities.
📊 Strong citation record reflecting research impact.

RESEARCH FOCUS 🔍

🌍 Energy Geotechnics – Investigating energy piles and thermal effects in geotechnical structures.
💧 Aquifer Thermal Energy Storage (ATES) – Modeling thermal and hydromechanical interactions in aquifers.
🏗 Geotechnical Engineering – Advanced simulations for subsurface stability and environmental impact.
CO₂ Sequestration – Numerical analysis of CO₂ storage efficiency in saline aquifers.
Renewable Energy Solutions – Enhancing efficiency of geothermal and energy storage systems.

PUBLICATION TOP NOTES 📚

1️⃣ Full-scale in-situ experimental study on the bearing capacity of energy piles under varying temperature and multiple mechanical load levels. Acta Geotechnica, 2023.
2️⃣ Thermo-hydro-mechanical coupled simulation of land subsidence due to aquifer thermal energy storage system in soft soils. Journal of Rock Mechanics and Geotechnical Engineering, 2024.
3️⃣ Operation optimization for aquifer thermal energy storage (ATES) systems based on a surrogate model-assisted method. Applied Thermal Engineering, 2025.
4️⃣ Numerical investigation of the storage efficiency factor for CO₂ geological sequestration in saline formations. Energy Procedia, 2013.
5️⃣ Investigation of CO₂ storage capacity in open saline aquifers with numerical models. Procedia Engineering, 2012.
6️⃣ Three-dimensional heat transfer-seepage coupling simulation of large-scale buried pipe cluster ground source heat pump system. Acta Energiae Solaris Sinica, 2024.
7️⃣ Thermomechanical analysis of energy piles using a novel load-transfer approach considering soil coupling effects. Computers and Geotechnics, 2024.