CENKER AKTEMUR | Energy | Best Researcher Award

Assist. Prof. Dr CENKER AKTEMUR | Energy | Best Researcher Award

Assistant Professor, Sivas University of Science and Technology, Turkey

Asst. Prof. Dr. Cenker Aktemur is a distinguished academic in Mechanical Engineering, specializing in thermodynamics, refrigeration systems, energy storage, and renewable energy. He completed his PhD at Kocaeli University, focusing on solar-assisted absorption and vapor compression cascade refrigeration systems. Dr. Aktemur’s extensive academic journey includes earning his MSc and BSc from Eastern Mediterranean University. Currently, he serves as an Assistant Professor at Sivas University of Science and Technology. Dr. Aktemur has an impressive publication record with notable works in energy analysis and optimization, showcasing his dedication to sustainability and energy efficiency.

PROFESSIONAL PROFILE

Google Scholar

Orcid

Scopus

STRENGTHS FOR THE AWARDS

  1. Extensive Academic Background
    • PhD in Mechanical Engineering with a focus on thermodynamics and renewable energy at Kocaeli University, supported by a prestigious scholarship under CoHE’s 100/2000 Program.
    • Master’s and Bachelor’s degrees in Mechanical Engineering, demonstrating a robust foundation in the field and fluency in English as the medium of education.
  2. Research Excellence
    • Published extensively in high-impact journals, covering topics like energy systems, thermodynamics, and renewable energy technologies.
    • Citations reflect strong contributions to refrigeration, thermal management, and sustainable energy systems, with notable works like:
      • Energy and exergy analysis of environmentally friendly refrigerants.
      • Optimization studies for insulation and energy savings.
  3. Professional Experience
    • Current role as an Assistant Professor at Sivas University of Science and Technology, leading research and academic initiatives.
    • Previous industrial experience as an R&D Engineer at CMAK Crane Systems, adding a practical dimension to theoretical expertise.
  4. Recognition and Awards
    • Scholarships for both undergraduate and graduate studies.
    • Consistent academic excellence, highlighted by Certificates of Honor and High Honor during undergraduate education.
  5. Interdisciplinary Focus
    • Expertise spans thermodynamics, refrigeration, solar energy, energy storage, and energy management, making a versatile and impactful researcher.

AREAS FOR IMPROVEMENT

  1. Collaboration and Visibility
    • Expanding international collaborations can increase the global visibility of research and diversify perspectives.
    • More active participation in international conferences and symposia to enhance networking opportunities.
  2. Grant Acquisition and Projects
    • Leadership in obtaining competitive research grants could further validate the impact and applicability of research.
    • Initiating or leading large-scale projects on renewable energy systems would strengthen professional credentials.
  3. Broader Dissemination
    • While publications are numerous, outreach through public lectures, workshops, or policy recommendations could amplify the societal impact of research.

EDUCATION

🎓 PhD in Mechanical Engineering – Kocaeli University (2018-2023)

  • Dissertation: Thermodynamic Performance Enhancement of Solar-Assisted Absorption and Vapor Compression Cascade Refrigeration Cycle
    🎓 MSc in Mechanical Engineering – Eastern Mediterranean University (2015-2017)
  • Thesis: Energy and Economic Analyses of Natural Gas Heating Systems
    🎓 BSc in Mechanical Engineering – Eastern Mediterranean University (2010-2015)
  • Capstone Project: Design and Manufacturing of Reverse Shoulder Prosthesis

EXPERIENCE

💼 Assistant Professor – Sivas University of Science and Technology (2024–Present)
💼 R&D Engineer – CMAK Crane Systems (2023-2024)

AWARDS AND HONORS

🏆 PhD Scholarship from CoHE 100/2000 Program (2018-2022)
🏆 MSc Scholarship (100%) and BSc Scholarship (50%) (2010-2017)
🏆 Certificates of Honor and High Honor during Undergraduate Studies (2011-2015)

RESEARCH FOCUS

🔬 Thermodynamic optimization of refrigeration systems
🔬 Renewable energy integration with advanced energy storage
🔬 Energy management and efficiency
🔬 Sustainable thermodynamic cycles

PUBLICATION TOP NOTES

  • Comparative energy and exergy analysis of a subcritical cascade refrigeration system using low global warming potential refrigerants 🌍
  • Optimum insulation thickness for the exterior walls of buildings in Turkey 🏠
  • Energy and exergy analysis of a subcritical cascade refrigeration system with internal heat exchangers ♻️
  • Thermodynamic performance enhancement of booster-assisted ejector expansion refrigeration systems 🌞
  • An overview of natural gas as an energy source for various purposes 🔥
  • Thermodynamic optimization of booster-ejector vapor compression refrigeration systems with R152a/Cu nano-refrigerant 🌱
  • A comparison of optimization techniques for energy systems design 🤖
  • Determination of optimum insulation thicknesses for Turkey’s climate regions 🌐
  • Optimization on the thermal insulation layer thickness in buildings 📐
  • Estimation of heating energy requirement and fuel consumption in prototype buildings 🏢
  • Optimizing insulation thickness based on wall orientations 🌅
  • Thermodynamic optimization of LiBr+LiCl/H2O absorption chillers 🌡️
  • Advanced exergy approaches on R41/R1233ZD cascade refrigeration systems 🧪
  • Energetic analysis of solar-driven absorption refrigeration systems ☀️
  • Integrated ORC-VCR system assessment 🔧
  • Overview of trigeneration systems 📊

CONCLUSION

Cenker Aktemur demonstrates a remarkable combination of academic rigor, research productivity, and professional expertise. His work in thermodynamic performance optimization and energy-efficient systems addresses critical global challenges in energy sustainability. While opportunities exist to broaden his influence through collaborations and leadership in large-scale projects, his accomplishments and trajectory strongly position him as a deserving candidate for the Best Researcher Award.

Hurayra Md Abu | Energy Power | Best Researcher Award

Mr Hurayra Md Abu | Energy Power | Best Researcher Award

Student/Member, North China Electric Power University, China

Md Abu Hurayra is a dedicated mechanical engineering student at North China Electric Power University (NCEPU), Beijing, China. Specializing in heat and mass transfer, energy storage, computational fluid dynamics (CFD), new energy materials, and mechanical design, Hurayra is committed to pushing the boundaries of sustainable energy solutions. With a top rank in both his Bachelor’s and Diploma programs, he has established a solid foundation in mechanical engineering. His research interests focus on enhancing energy efficiency, exploring innovative energy storage materials, and applying AI in mechanical design. Hurayra is recognized for his contributions to green technologies and sustainable practices, which are reflected in his published work. He continues to pursue academic excellence, aiming to drive advancements in energy and mechanical engineering. Hurayra’s dedication to his field is evident in his achievements, and he is poised to make significant contributions to the industry.

Profile

Google Scholar

Strengths for the Award

Md Abu Hurayra demonstrates exceptional academic and research capabilities, which make him a strong contender for the Best Researcher Award. His academic achievements, including being ranked 1st in both his Bachelor’s and Diploma programs, highlight his commitment to excellence. His research focuses on critical areas such as heat and mass transfer, energy storage, new energy materials, and the application of AI in mechanical design. His work on biomaterials for energy storage, published in Green Technologies and Sustainability, reflects his contribution to sustainable technologies, a key area of global importance. Hurayra has shown solid potential in translating theoretical knowledge into practical, innovative solutions for energy efficiency and sustainability, positioning him as a future leader in the field.

Areas for Improvement

While Hurayra has made impressive strides in his academic journey, there are a few areas where further development could strengthen his profile for the award. His citation index, publication count, and involvement in industry-sponsored projects could be expanded to demonstrate the broader impact and recognition of his research. Gaining more hands-on experience in applied industry research, as well as publishing more articles in high-impact journals, could further establish his research visibility. Also, leadership in collaborative research and editorial roles in high-tier journals could amplify his academic influence.

Education 

Md Abu Hurayra is currently pursuing a Bachelor of Science in Mechanical Engineering at North China Electric Power University (NCEPU), Beijing, China, with an impressive score of 87.73% in the 6th semester and ranking 1st out of 35 students. He has demonstrated outstanding academic performance, reflecting his passion and commitment to the field of mechanical engineering. Prior to his undergraduate studies, Hurayra completed a Diploma in Mechanical Technology at the Bangladesh Sweden Polytechnic Institute (BSPI) in Chittagong, Bangladesh, where he earned a CGPA of 3.93 out of 4.00, securing the top rank in his class. His educational background provides him with a comprehensive understanding of mechanical engineering principles, reinforced by his expertise in energy systems, heat transfer, and mechanical design. Hurayra’s academic achievements highlight his strong technical abilities and potential for future innovation in the mechanical and energy engineering sectors.

Experience 

Md Abu Hurayra has been actively involved in various research and consultancy projects during his academic journey. At North China Electric Power University, he has participated in cutting-edge research related to heat and mass transfer, energy storage, and CFD. His involvement in these projects has allowed him to apply theoretical knowledge to real-world challenges, particularly focusing on enhancing energy storage systems and exploring new energy materials. Hurayra has also contributed to collaborative industry projects, where he worked alongside professionals to develop innovative mechanical design solutions, integrating AI to optimize performance. His technical skills, combined with his ability to collaborate effectively with diverse teams, have positioned him as a valuable asset to research initiatives. Additionally, Hurayra’s experience in publishing research articles and presenting at conferences further demonstrates his growing influence in the field of mechanical engineering, particularly in energy and sustainability-related projects.

Awards and Honors

Md Abu Hurayra has received several academic and research-related honors in recognition of his dedication and excellence. He was ranked 1st in both his Bachelor’s program at North China Electric Power University (NCEPU) and his Diploma course at Bangladesh Sweden Polytechnic Institute (BSPI), reflecting his academic prowess and commitment to mechanical engineering. His research in energy storage and sustainable technologies has been acknowledged by peers and faculty, positioning him as a promising young researcher. Hurayra’s scholarly achievements include recognition for his work in heat and mass transfer, where he has contributed valuable insights into energy efficiency. His leadership in various research initiatives, combined with his ability to apply theoretical concepts to real-world applications, has earned him respect within the academic community. As he continues his studies and research, Hurayra is expected to receive further recognition for his contributions to energy technologies and mechanical design.

Research Focus 

Md Abu Hurayra’s primary research focus lies at the intersection of heat and mass transfer, energy storage systems, and the application of AI in mechanical design. His research interests extend to developing new energy materials that can enhance the efficiency and sustainability of energy storage technologies. Hurayra’s work in computational fluid dynamics (CFD) explores how fluid dynamics can be optimized in energy systems, such as batteries and renewable energy systems, to maximize performance. He is passionate about green technologies and sustainable solutions that address the growing energy challenges of today’s world. Hurayra also focuses on the application of AI in mechanical design to improve system optimization, reduce energy consumption, and foster innovation in energy-efficient products. His interdisciplinary approach, integrating material science, thermodynamics, and advanced computational techniques, places him at the forefront of research into next-generation energy solutions.

Publication Top Notes

  1. Biomaterials for energy storage: Synthesis, properties, and performance 🌱🔋 (MS Chowdhury, MS Oliullah, RT Islam, MA Hurayra, MZ Al Mahmud, et al.) Green Technologies and Sustainability, 100152

Conclusion

Md Abu Hurayra possesses a strong foundation in mechanical engineering and energy systems. His research contributions to sustainable energy storage and mechanical design are notable, and his potential for future innovation is clear. While there is room for further growth in terms of publishing more research and gaining wider industry exposure, his dedication, academic achievements, and the impact of his work on energy solutions make him a highly suitable candidate for the Best Researcher Award. With continued research contributions and collaborations, Hurayra is poised to become a leading figure in the field of mechanical and energy engineering.