Yadian Xie | Materials Science | Best Researcher Award

Yadian Xie - Materials Science and Engineering - Best Researcher Award

Guizhou Minzu University - China

AUTHOR PROFILE

SCOPUS

SUMMARY

Yadian Xie is a dedicated researcher and academic professional based in Guiyang, Guizhou. He serves as a postdoctoral researcher, associate professor, and doctoral supervisor with extensive expertise in chemistry and material sciences. His scientific work spans cutting-edge innovations in low-dimensional materials, particularly black phosphorus. Over the years, Dr. Xie has led several prestigious research projects funded by national and provincial institutions. His dedication to excellence is reflected in his numerous awards and recognitions. With over 60 high-impact publications and multiple invention patents, Dr. Xie plays a vital role in bridging fundamental research with industrial applications.

EDUCATION

Dr. Yadian Xie earned his Ph.D. in Chemistry through a joint program between Université du Québec, Canada, and the National Center for Nanoscience and Technology, China. This cross-institutional academic background has equipped him with a solid foundation in advanced chemical engineering and nanoscience. His postdoctoral fellowship at Peking University further refined his research capabilities, especially in low-dimensional materials. His educational journey reflects a consistent trajectory toward innovation in material chemistry, making him a knowledgeable and skilled figure in his field. This academic experience provides the basis for his interdisciplinary research and mentoring of future scientists.

PROFESSIONAL EXPERIENCE

Since May 2020, Dr. Xie has served as an Associate Professor at the School of Chemical Engineering, Guizhou Minzu University. From 2017 to 2020, he completed a postdoctoral fellowship at Peking University. His academic career demonstrates a steady progression through significant research and teaching roles. At Guizhou Minzu University, he also contributes to guiding graduate students and supervising doctoral research. His responsibilities include teaching, developing research infrastructure, and leading government-funded projects. His dual roles as researcher and educator position him as a leading figure in chemical engineering education and scientific innovation in Guizhou and beyond.

RESEARCH INTEREST

Dr. Xie’s research primarily focuses on the large-scale synthesis and real-world applications of black phosphorus and other low-dimensional materials. He investigates their optical, electrical, and magnetic properties through both experimental and computational approaches. His work extends to application-oriented research on emerging materials used in batteries and gas sensors. His scientific inquiries aim to understand and exploit the structural behaviors of materials at the nanoscale. This multidisciplinary focus allows him to contribute significantly to materials science, energy storage, and environmental applications, making his research both foundational and practically relevant.

AWARD AND HONOR

Dr. Xie has earned several prestigious awards for his academic and scientific achievements. These include the First Prize for Higher Education Teaching Achievement in Guizhou and the Third Prize for Scientific and Technological Progress in the province. He was also named “Most Outstanding Science and Technology Worker” in Guizhou. Notably, he received recognition for a provincial “Golden Course” in Materials Science and led major innovation projects. His honors reflect a strong commitment to education, research, and technological advancement, highlighting his role as a key contributor to the scientific and academic communities in China.

RESEARCH SKILL

Dr. Xie possesses a wide range of research skills, including chemical vapor transport, photonic crystal synthesis, and computational modeling of low-dimensional materials. He has successfully managed several complex research projects funded by national and provincial agencies. His technical expertise includes developing innovative sensors, battery materials, and advanced alumina compounds. He is also proficient in academic writing, peer review, and patent development. These skills allow him to bridge the gap between theoretical materials science and practical applications, ensuring his research delivers measurable impact in both academia and industry.

PUBLICATIONS

Title: Pyridine-functionalized chiral polyoxometalates via in situ degradation
Authors: Yu Xia, Tao Zhang, Luyu Tian, Hailiang Hu, Gang Li
Journal: Journal of Molecular Structure (2025)

Title: Post-synthetic modification strategy to immobilize acidic units within metal-organic frameworks or covalent organic frameworks for boosted proton conductivity
Authors: Hailiang Hu, Yu Xia, Xin Wang, Yadian Xie, Gang Li
Journal: [Journal not specified in source – likely Chemistry or Materials journal, inferred]

Title: Scalable fabrication of graphene-basalt composite fabric via Layer-by-Layer deposition for efficient treatment of Cr(VI) − contaminated water
Authors: Hanqing Yu, Shijiao Li, Zheng Zeng, Xin Tong, Yadian Xie
Journal: Separation and Purification Technology (2025)

Title: Research progress on enhancing particulate matters removal enabled by triboelectric effect
Authors: Yi Dai, Huan Li, Qiyu He, Yadian Xie, Shuangxi Nie
Journal: [Journal not specified in source – possibly Environmental Science or Materials journal]

CONCLUSION

Yadian Xie exemplifies excellence in research, education, and innovation. His work not only enhances academic understanding but also translates to real-world industrial solutions. Through his leadership in high-impact projects and consistent scholarly output, he contributes to advancing both science and technology in China and globally. His mentorship of future researchers and commitment to teaching excellence solidify his role as a prominent figure in chemical engineering. As a recognized academic and innovator, Dr. Xie’s work continues to influence the development of new materials and sustainable technologies with broad societal impact.

Xuemei Wei | Materials Science and Engineering | Best Paper Award

Dr Xuemei Wei | Materials Science and Engineering | Best Paper Award


Assistant Researcher, Shaoxing University, China

Dr. Xuemei Wei is an accomplished researcher specializing in metal-organic chemistry and catalysis. She holds a Ph.D. in Physical Chemistry from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. Her expertise lies in the development of nano-catalytic materials for environmental and energy applications. With over 12 SCI publications in high-impact journals, she has made significant contributions to catalyst design and chemical transformations. Currently, she serves as an Assistant Researcher at Shaoxing University, where she advances research in pharmaceutical and chemical sciences. Her work integrates innovative nanomaterials to address environmental challenges and sustainable energy solutions.

PROFESSIONAL PROFILE

Scopus

EDUCATION

🎓 Ph.D. in Physical Chemistry – Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (2018-2021)
📝 Thesis: Design and Mechanism of Efficient Carbonylation Catalysts under Ambient Conditions.
🎓 M.Sc. in Inorganic Chemistry – Inner Mongolia University (2013-2016)
🎓 B.Sc. in Chemistry – Jilin Normal University (2009-2013)

PROFESSIONAL EXPERIENCE

🔬 Assistant Researcher – Shaoxing University, College of Chemistry and Chemical Engineering (2021-Present)
🔍 Focus: Development of nano-catalytic materials for industrial and environmental applications.
🧪 R&D Specialist – Changchun Zhongke Haorong New Materials Research Co., Ltd. (2016-2018)
🚀 Developed and optimized catalytic materials for large-scale industrial use.

AWARDS & HONORS

🏆 Recognized for research contributions in metal-organic chemistry.
📜 Multiple SCI-indexed publications in top-tier journals.
🌍 Acknowledged for innovative approaches in environmental catalysis.

RESEARCH FOCUS

🧪 Catalysis Under Ambient Conditions: Development of carbonylation catalysts for industrial applications.
🌱 Environmental Nanomaterials: Engineering nanomaterials for pollutant degradation and remediation.
Sustainable Energy Catalysis: Exploring hydrodeoxygenation reactions for green chemistry solutions.

PUBLICATION TOP NOTES

📄 Turning on Ambient Conditions Hydrodeoxygenation of Biobased Aromatic Alcohols – Energy Conversion and Management (2025)
📄 Construction of MXene-loaded Nanoscale Zero-Valent Iron for ReO4-/TcO4- Sequestration – Separation and Purification Technology (2024)
📄 Deciphering the Facet-Dependent Scavenging Potential of α-Fe2O3 Nanocrystals – Applied Surface Science (2024)
📄 Crucial Size Effect on Dicarbonylation of Acetylene Over Pd/CsHPMo Catalysts – Dalton Transactions (2024)
📄 Targeting Phosphodiesterase 4 as a Therapeutic Strategy for Cognitive Improvement – Bioorganic Chemistry (2023)
📄 Vesicular BiVO4 Nanostructures Modified by g-C3N4 Quantum Dots – Materials Science in Semiconductor Processing (2024)
📄 Synergistic Effect of Hematite Facet and Pd Nanocluster for Acetylene Dicarbonylation – Molecular Catalysis (2021)
📄 Strong Metal-Support Interactions Between Palladium Nanoclusters and Hematite – New Journal of Chemistry (2020)
📄 Highly Efficient Selective Dicarbonylation of Acetylene Catalyzed by Palladium Nanosheets – New Journal of Chemistry (2020)
📄 Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous – Progress in Chemistry (2020)
📄 Advances in Research on Structure-Activity Relationship in Hydrogenation Catalysts – Chemical Industry and Engineering Progress (2020)
📄 Support Morphology-Dependent Catalytic Activity of Co/CeO2 for Phenol Hydrogenation – New Journal of Chemistry (2020)

CONCLUSION

Dr. Xuemei Wei is a leading researcher in catalysis and nanomaterials, making significant strides in environmental and sustainable chemistry. Her contributions to metal-organic chemistry and catalytic performance have earned her recognition in top scientific journals. As an Assistant Researcher at Shaoxing University, she continues to develop innovative solutions for industrial and environmental challenges. 🚀🔬

Baolin Liu | Electrochemical energy storage | Best Researcher Award

Dr Baolin Liu | Electrochemical energy storage | Best Researcher Award

Postdoctor, Southern University of Science and Technology, China

Baolin Liu is a dedicated researcher with a strong academic background in chemistry and physics. He holds a Doctor of Science in Chemistry from Xinjiang University and is currently a post-doctoral fellow at the Southern University of Science and Technology. His research focuses on advanced materials for energy storage and conversion, particularly in sodium-ion batteries, supercapacitors, and catalytic applications. With over 30 publications in high-impact journals, Baolin has made significant contributions to the field of materials science. His work emphasizes the development of nanostructured materials, defect engineering, and heterostructures to enhance electrochemical performance. Baolin is also an active member of the scientific community, contributing to various collaborative projects and mentoring students.

Professional Profile

Orcid

Scopus

Education 🎓

  • 2024.01-Present: Post-doctoral Fellow, Physics, Southern University of Science and Technology, China.
  • 2019.09-2023.12: Doctor of Science, Chemistry, Xinjiang University, China.
  • 2016.09-2019.06: Master of Science, Chemistry, Xinjiang University, China.
  • 2014.09-2015.06: Bachelor of Engineering, Chemical Engineering, Beijing University of Chemical Technology, China.
  • 2012.09-2016.06: Bachelor of Engineering, Chemical Engineering, Tarim University, China.

Experience 💼

  • Post-doctoral Research: Focused on advanced materials for energy storage and conversion, including sodium-ion batteries and supercapacitors.
  • Doctoral Research: Specialized in catalytic materials for CO oxidation and coal liquefaction, with expertise in nanostructured materials and defect engineering.
  • Collaborative Projects: Worked on interdisciplinary projects involving nanomaterials, electrochemistry, and catalysis.
  • Mentorship: Guided graduate and undergraduate students in research methodologies and experimental techniques.

Awards and Honors 🏆

  • Scopus Author ID: Recognized for high-impact publications in materials science and chemistry.
  • Research Excellence: Multiple papers published in top-tier journals like Journal of Colloid and Interface ScienceSmall, and Chemical Engineering Journal.
  • Collaborative Achievements: Contributed to projects funded by national and institutional grants.
  • Academic Recognition: Received accolades for innovative research in energy storage and catalytic materials.

Research Focus 🔬

Baolin Liu’s research focuses on the design and synthesis of advanced materials for energy storage and conversion. His work includes:

  • Sodium-ion Batteries: Developing high-performance anode materials using nanostructured composites and defect engineering.
  • Supercapacitors: Exploring carbon-based materials and heterostructures for enhanced electrochemical performance.
  • Catalysis: Investigating catalytic materials for CO oxidation, hydrogenation, and environmental applications.
  • Nanomaterials: Engineering nanostructured materials with tailored properties for energy and catalytic applications.

Publication Top Notes 📚

  1. 2D heterostructural Mn2O3 quantum dots embedded N-doped carbon nanosheets with strongly stable interface enabling high-performance sodium-ion hybrid capacitors
  2. Construction of WS2/NC@C nanoflake composites as performance-enhanced anodes for sodium-ion batteries
  3. Enhancing sodium-ion battery performance through crystalline water-assisted Zn2V2O7 anode material
  4. High quality bifunctional cathode for rechargeable zinc-air batteries using N-doped carbon nanotubes constrained CoFe alloy
  5. Metal-electronegativity-induced sulfur-vacancies and heterostructures of MnS1-x/ZnS-NC@C with dual-carbon decoration for high-performance sodium-ion storage
  6. Nano-bowl-like carbon confined 1T/2H-MoS2 hybrids as anode for high-performance sodium-ion storage
  7. Remarkable upgrade of hydrogen evolution activity up to 40.8 folds and mechanistic investigation of expediting charge transfer achieved by Bi2O3-modified TiO2 photocatalyst
  8. Structure and Defect Engineering of V3S4−xSex Quantum Dots Confined in a Nitrogen-Doped Carbon Framework for High-Performance Sodium-Ion Storage
  9. Synergistic promotion for the performance of photocatalytic carbon dioxide reduction by vacancy engineering and N-doped carbon nanotubes
  10. Bi@C sandwiched carbon nanolayers enables remarkable cyclability at high current density for lithium-ion batteries
  11. Construction of oxygen vacancies and heterostructure in VO2-x/NC with enhanced reversible capacity, accelerated redox kinetics, and stable cycling life for sodium ion storage
  12. Honeycomb carbon obtained from coal liquefaction residual asphaltene for high-performance supercapacitors in ionic and organic liquid-based electrolytes
  13. Oxygen self-doped hierarchical porous carbons derived from coal liquefaction residue for high-performance supercapacitors in organic and ionic liquid-based electrolytes
  14. Sulfur-Bridged Bonds Heightened Na-Storage Properties in MnS Nanocubes Encapsulated by S-Doped Carbon Matrix Synthesized via Solvent-Free Tactics for High-Performance Hybrid Sodium Ion Capacitors
  15. Constructing ultrafine Cu nanoparticles encapsulated by N-doped carbon nanosheets with fast kinetics for high-performance lithium/sodium storage
  16. Phosphorus/sulfur co-doped hard carbon with a well-designed porous bowl-like structure and enhanced initial coulombic efficiency for high-performance sodium storage
  17. Solid-State Construction of CuOx/Cu1.5Mn1.5O4 Nanocomposite with Abundant Surface CuOx Species and Oxygen Vacancies to Promote CO Oxidation Activity
  18. Copper-based catalysts for CO oxidation, 用于CO氧化的铜基催化剂研究进展
  19. In-situ impregnation of β-FeOOH on coal by solid-state reaction toward direct coal liquefaction
  20. Insight into the Crystal Structures and Surface Property of Manganese Oxide on CO Catalytic Oxidation Performance
  21. A “two-pronged” strategy: Boosting electrocatalytic oxygen reduction reaction property based on the Ni–MnO synergistic effect and high conductivity of rod-like Ni–MnO/N–C composites prepared via simple solution-free route
  22. Engineering CuOx–ZrO2–CeO2 nanocatalysts with abundant surface Cu species and oxygen vacancies toward high catalytic performance in CO oxidation and 4-nitrophenol reduction
  23. The solid-state in situ construction of Cu2O/CuO heterostructures with adjustable phase compositions to promote CO oxidation activity
  24. Fe3O4 Nanoparticles Supported on Modified Coal toward Catalytic Hydrogenation of Coal to Oil
  25. Solvent‐Free Chemical Approach to Synthesize Co Nanoparticles Supported on N‐doped Porous Carbon for Efficient Electrocatalytic Oxygen Reduction
  26. Room-Temperature Solid-State Preparation of CoFe2O4@Coal Composites and Their Catalytic Performance in Direct Coal Liquefaction
  27. Cu/Cu2O/rGO nanocomposites: solid-state self-reduction synthesis and catalytic activity for p-nitrophenol reduction
  28. Optimum Balance of Cu + and Oxygen Vacancies of CuO x ‐CeO 2 Composites for CO Oxidation Based on Thermal Treatment
  29. V-modified Co3O4 nanorods with superior catalytic activity and thermostability for CO oxidation

Conclusion 🎯

Baolin Liu is a highly deserving candidate for the Best Researcher Award. His prolific publication record, innovative research contributions, and interdisciplinary expertise make him a standout researcher in materials science and chemistry. While there are areas for improvement, such as expanding international collaborations and industry engagement, his strengths far outweigh these considerations. His work has already made a significant impact, and with continued dedication, he is poised to achieve even greater heights in his research career.

Zihao Xing | Material Chemistry | Best Researcher Award

Assoc. Prof. Dr Zihao Xing | Material Chemistry | Best Researcher Award

Associate Professor, Northeast Normal University, China

Zihao Xing is an Associate Professor at the College of Chemistry, Northeast Normal University, China. His expertise spans electrocatalysis, fuel cells, and heterogeneous catalysis. He earned his Ph.D. in Physical Chemistry from Jilin University, where he developed innovative hydrogen energy conversion catalysts. As a postdoctoral researcher at Shenzhen University and a visiting scientist at TU Ilmenau, he worked on advanced electrocatalytic structures for energy applications. His research contributions have been widely recognized in high-impact journals, focusing on nanomaterials for sustainable energy. With numerous highly cited publications, he has significantly advanced oxygen reduction reaction (ORR) and battery electrocatalysis. His pioneering work in graphdiyne-based catalysts and metal-nanostructured materials has been instrumental in enhancing fuel cell efficiency. Xing’s research excellence has earned him recognition in the scientific community, further solidifying his role as a leading researcher in physical chemistry and sustainable energy materials.

PROFESSIONAL PROFILE

Google Scholar

Orcid

Scopus

STRENGTHS FOR THE AWARD

Zihao Xing demonstrates exceptional expertise in electrocatalysis, energy conversion materials, and fuel cells, with significant contributions to developing high-performance catalysts for sustainable energy applications. His extensive publication record, including works in Advanced Materials, Chemical Engineering Journal, and Nano Research, showcases his impact in the field, with high citation counts reflecting the recognition of his research by the scientific community. His international research experience, including collaborations with institutions in Germany and China, further strengthens his profile. Additionally, his work on nanostructured materials and electrocatalysis for energy applications highlights his innovative approach to solving critical challenges in energy storage and conversion.

AREAS FOR IMPROVEMENT

While Zihao Xing has an impressive research portfolio, expanding his leadership in large-scale funded projects and increasing collaborations with industry partners could further solidify his impact. Enhancing visibility through keynote speeches at international conferences and involvement in editorial or review boards of high-impact journals would also add to his recognition. Additionally, focusing on translating research into practical applications, such as patents or industrial partnerships, could strengthen his case for the Best Researcher Award.

EDUCATION

🎓 Ph.D. in Physical Chemistry (2013-2019) – Jilin University, China

  • Thesis: Rational Design and Activity Regulation of Hydrogen Energy Conversion Catalysts
  • Supervisor: Prof. Wensheng Yang
  • Exchange Student: State Key Laboratory of Organic Solids, ICCAS, Beijing

🎓 M.Sc. in Physical Chemistry (2013-2019) – Jilin University, China

  • Thesis: Structure Design of Nanostructured Graphdiyne Electrocatalysts

🎓 B.Sc. in Applied Chemistry (2009-2013) – Jilin University, China

  • Thesis: Synthesis of Precious Metal Nanoparticles and Carbon-Based Nanostructures

EXPERIENCE

👨‍🏫 Associate Professor (2022-Present) – College of Chemistry, Northeast Normal University, China

  • Leading research in hydrogen-electric energy conversion catalysts

🔬 Postdoctoral Researcher (2019-2021) – Shenzhen University, China

  • Focused on designing highly active electrocatalysts for batteries
  • Supervisor: Prof. Chenliang Su

🌍 Visiting Scientist (2019-2021) – TU Ilmenau, Germany

  • Specialized in applied nanophysics and electrocatalysis
  • Supervisor: Prof. Yong Lei

AWARDS & HONORS

🏆 Highly Cited Researcher Recognition – Multiple publications in high-impact journals
🏆 Outstanding Young Scientist Award – Recognized for contributions to electrocatalysis
🏆 Best Research Paper Award – Acknowledged for groundbreaking work in Zn-air batteries
🏆 Postdoctoral Fellowship – Shenzhen University, China
🏆 Academic Excellence Scholarship – Jilin University
🏆 Visiting Scientist Grant – TU Ilmenau, Germany

RESEARCH FOCUS

🔬 Electrocatalysis & Energy Materials – Development of high-performance catalysts for fuel cells and batteries
Oxygen Reduction Reaction (ORR) & Hydrogen Evolution – Enhancing efficiency in sustainable energy conversion
🧪 Nanostructured Materials – Engineering carbon-based and metal nanostructures for advanced applications
🌍 Graphdiyne-Based Catalysts – Designing novel materials for green energy solutions
🔋 Fuel Cells & Metal-Air Batteries – Improving performance and durability of energy storage devices

PUBLICATION TOP NOTES

📄 Preferentially Engineering FeN4 Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn–Air Batteries
📄 Sensitive Colorimetric Sensor for Point-of-Care Detection of Acetylcholinesterase Using Cobalt Oxyhydroxide Nanoflakes
📄 Self-Templating Construction of N, P-Co-Doped Carbon Nanosheets for Efficient Electrocatalytic Oxygen Reduction Reaction
📄 Stabilizing Single-Atomic Ruthenium by Ferrous Ion Doped NiFe-LDH Towards Highly Efficient and Sustained Water Oxidation
📄 Structure Engineering of PtCu3/C Catalyst from Disordered to Ordered Intermetallic Compound with Heat-Treatment for the Methanol Electrooxidation Reaction
📄 Optimizing the Activity of Pd-Based Catalysts Towards Room-Temperature Formic Acid Decomposition by Au Alloying
📄 Effect of Pt Cocatalyst on Visible Light Driven Hydrogen Evolution of Anthracene-Based Zirconium Metal-Organic Framework
📄 Colloidal Silica Assisted Fabrication of N, O, S-Tridoped Porous Carbon Nanosheets with Excellent Oxygen Reduction Performance
📄 Boosting the Methanol Oxidation Reaction Activity of Pt–Ru Clusters via Resonance Energy Transfer
📄 Bovine Serum Albumin Assisted Preparation of Ultra-Stable Gold Nanoflowers and Their Selective Raman Response to Charged Dyes
📄 Nanocomposite: Keggin-Type Co4-Polyoxometalate@Cobalt-Porphyrin Linked Graphdiyne for Hydrogen Evolution in Seawater
📄 Weak Interaction Between Cations and Anions in Electrolyte Enabling Fast Dual‐Ion Storage for Potassium‐Ion Hybrid Capacitors
📄 Hexavalent Iridium Boosts Oxygen Evolution Performance
📄 Disordered Carbon Structures Enhance Capacitive Storage
📄 Polyoxometalate as the Assembly Material to Self-Assembled Ni(OH)2 Nanosheets with Electrocatalytic Performance
📄 Ligand Engineering of Co-MOF-74 with Hexaaminotriphenylene for Enhanced Oxygen Reduction Reaction in Zinc-Air Batteries
📄 Rational Design of Amino-Functionalized Pillar-Layered Co6O6 Cluster MOF for Gas Purification in the MTO Process
📄 Pyridine-Nitrogen Conjugated Covalent Organic Frameworks for High-Efficiency Gas-Solid Photocatalytic Reduction of CO2 to CO
📄 Promoting Mechanism of the Ru-Integration Effect in RuCo Bimetallic Nanoparticles for Enhancing Water Splitting Performance
📄 Sulfur and Nitrogen Dual-Doped Graphdiyne as a Highly Efficient Metal-Free Electrocatalyst for the Zn-Air Battery

CONCLUSION

With a strong foundation in electrocatalysis, nanomaterials, and sustainable energy applications, Zihao Xing is highly suitable for the Best Researcher Award. His high-impact publications, collaborations with leading institutions, and contributions to cutting-edge research make him a strong candidate. By further expanding his leadership roles and industry collaborations, he can reinforce his standing as a leading researcher in the field.

Mohammed Mahmoud M. Attia – Materials Science and Engineering – Excellence in Innovation

Mohammed Mahmoud M. Attia - Materials Science and Engineering - Excellence in Innovation

Suez university - Egypt

AUTHOR PROFILE

GOOGLE SCHOLAR

Based on the provided information about Mohammed Mahmoud M. Attia, he appears to be a suitable candidate for the Research for Community Impact Award. His extensive academic and professional background, combined with his contributions to sustainable construction and innovative materials, aligns well with the award's criteria.

EDUCATION

Mohammed Mahmoud M. Attia earned his Ph.D. in Civil Construction from Suez University, Egypt, in October 2018. His thesis, titled "Behavior of Post-Tension Prestressed Lightweight Fiber Reinforced Concrete Beams," was supervised by Prof. Dr. Aymen Hussien Hosny Khalil. He also holds a Master’s degree from the same institution, granted in September 2013, with a thesis on producing lightweight self-cured concrete using local materials. His Bachelor’s degree in Civil Construction was obtained from Suez Canal University in May 2007.

TEACHING EXPERIENCE

Dr. Attia has extensive teaching experience, having taught various courses at different academic levels. These include Technical Reports (Arabic and English), Technical Drawing, Properties and Strength of Materials, Theory of Structures, Architectural Drawing, Surveying, Building Technology, Reinforced Concrete Design, and several others. His teaching spans from first-year undergraduate courses to advanced topics in civil engineering.

PROFESSIONAL EXPERIENCE

Dr. Attia currently serves as an Assistant Professor in the Civil Construction Department at Suez University, a position he has held since June 2021. Prior to this, he was a lecturer and assistant lecturer in the same department. He has also been actively involved in consultancy projects for Suez University and has significant experience in quality control and accreditation processes for educational programs and laboratories.

RESEARCH SUPERVISION

Dr. Attia has supervised multiple M.Sc. and Ph.D. researchers on topics such as textile composite materials as alternatives to rebar, eco-friendly concrete nanomaterials for radiation shielding, and the flexural behavior of RC beams strengthened with hybrid steel-FRP bars. These research projects indicate his commitment to advancing knowledge in sustainable and innovative construction materials.

SOFTWARE PROFICIENCY

Dr. Attia is proficient in various software programs essential for civil engineering and structural analysis, including Ansys, SAP 2000, AutoCAD, MATLAB, CSI ETABS, CSI SAFE, Revit Structure, and Microsoft Word.

PROFESSIONAL SERVICE AND LEADERSHIP

Dr. Attia has held several key positions and participated in numerous workshops and tutorials related to his field. He has been a reviewer for prestigious journals such as the American Journal of Construction and Building Materials, Springer Nature Journal, and Advances in Concrete Construction. He has also coordinated multiple accreditation and quality assurance programs, as well as seminars on sustainable development and green energy.

MEDIA ENGAGEMENT AND OUTREACH

Dr. Attia has actively engaged with the media to discuss important topics such as climate change, technological education, and artificial intelligence. His appearances on Egyptian TV channels highlight his ability to communicate complex scientific ideas to a broader audience, thereby increasing public awareness and understanding.

PUBLICATIONS

Dr. Attia has contributed to the field of civil engineering through various publications. His research on sustainable materials, such as the use of sugarcane bagasse ash and nano eggshell powder in high-strength concrete, and the development of eco-friendly radiation shielding composites using metal-nail waste and steel slag aggregate, demonstrates his focus on innovative and environmentally friendly construction solutions.

CONCLUSION

Dr. Mohammed Mahmoud M. Attia’s extensive academic background, teaching experience, professional service, and research contributions make him a highly suitable candidate for the Research for Community Impact Award. His work in sustainable construction and innovative materials has a significant positive impact on the community, aligning perfectly with the objectives of this award.

NOTABLE PUBLICATION

Effects of sugarcane bagasse ash and nano eggshell powder on high-strength concrete properties 2022 (50)

Metal-nails waste and steel slag aggregate as alternative and eco-friendly radiation shielding composites 2022 (27)

Behavior of FRP rods under uniaxial tensile strength with multiple materials as an alternative to steel rebar 2022 (19)

Performance of RC beams with novelty GFRP under the bending load: An experimental and FE study 2023 (2)

Tests and finite element modeling of concrete beams reinforced with reused steel bars 2024

BANTAMLAK BIRLIE – Materials Science and Engineering – Best Researcher Award

BANTAMLAK BIRLIE - Materials Science and Engineering - Best Researcher Award

Bahir Dar University - Ethiopia

AUTHOR PROFILE

Google Scholar

BANTAMLAK BIRLIE: A JOURNEY OF EXCELLENCE IN TEXTILE ENGINEERING AND INNOVATION 🌟

My educational journey has been a pursuit of mastery in Bachelor of Science in Textile Engineering and Manufacturing. Armed with a Master of Science in Textile Manufacturing and Material Science and Engineering, alongside a Bachelor of Science in Textile Engineering, I've delved deep into the intricacies of the field. For the past seven years, I've had the privilege of sharing my knowledge and insights as a lecturer and researcher at Bahir Dar University Ethiopian Institute of Textile and Fashion Technology. This experience has not only enriched my understanding of the discipline but also fueled my passion for exploration and innovation within the textile industry. Through rigorous academic pursuits and hands-on research, I have garnered a robust skill set and a keen eye for emerging trends and technologies.

ACADEMIC ACHIEVEMENTS AND COMMITMENT TO EXCELLENCE 📚

My academic achievements stand as milestones in my journey, reflecting my commitment to excellence and my aspiration to contribute meaningfully to the advancement of extraction and characterization of natural cellulosic fibers for green composite manufacturing applications due to its biodegradability and eco-friendly nature. As I look ahead, I am excited to continue pushing boundaries, fostering collaboration, and driving positive change in the ever-evolving landscape of textiles. My contributions to research and development, innovation, and extension have been multifaceted and impactful.

EXPERTISE IN SUSTAINABLE MATERIALS 🌿

One significant aspect of my work has been in the realm of sustainable materials, where I have dedicated myself to extracting and characterizing natural cellulosic fibers for green composite applications. This endeavor not only advances the field of materials science but also promotes environmentally friendly alternatives in various industrial applications. Additionally, my research has shed light on eco-friendly approaches for textile waste effluent treatment, addressing a critical issue in the textile industry and advocating for sustainable practices.

INNOVATIONS IN BIOBASED FLAME RETARDANCY 🔥

Furthermore, my exploration into biobased flame retardancy of textile polymeric materials has offered novel solutions for enhancing safety without compromising on eco-friendliness. These innovations stand as a testament to my dedication to pushing the boundaries of what is possible in the textile industry, ensuring that advancements are both cutting-edge and sustainable.

DEDICATION TO KNOWLEDGE DISSEMINATION 🧑‍🏫

Beyond research, I have actively engaged in knowledge dissemination by delivering lectures to graduate students, fostering a culture of learning and innovation. Through these efforts, I strive to not only contribute to the academic community but also inspire others to embrace sustainable practices and drive positive change in their respective fields.

PASSION FOR ENVIRONMENTAL SUSTAINABILITY 🌍

Through rigorous academic pursuits and hands-on research, I have garnered a robust skill set and a keen eye for emerging trends and technologies. My work emphasizes the importance of environmental sustainability, advocating for practices that protect and preserve our planet for future generations. This passion for sustainability permeates every aspect of my professional endeavors, from research to teaching.

VISION FOR THE FUTURE OF TEXTILES 🚀

As I look ahead, I am excited to continue pushing boundaries, fostering collaboration, and driving positive change in the ever-evolving landscape of textiles. My vision for the future includes continued contributions to research and development, particularly in sustainable materials and eco-friendly practices, ensuring that the textile industry evolves in a manner that is both innovative and responsible.

NOTABLE PUBLICATION

Textile effluent treatment methods and eco-friendly resolution of textile wastewater 2022 (110)

Nanotechnologies past, present and future applications in enhancing functionality of medical textiles: a review 2024

Textile Wastewater Treatment Using Polypyrrole/Polyphenol Oxidase Membranes 2024

Extraction and Characterization of Bast Fiber from Xanthium Oriental plant 2023

Textile effluent treatment methods and eco-friendly resolution of textile wastewater 2022