Wenliang Yin | Sustainable Development | Best Researcher Award

Assoc. Prof. Dr. Wenliang Yin | Sustainable Development | Best Researcher Award

Chairman Of Department at Shandong University of Technology, China

Wenliang Yin is an associate professor at the School of Electrical and Electronic Engineering at Shandong University of Technology (SDUT), China. With a robust background in renewable energy systems and wind power engineering, he has made significant contributions to the development of hybrid wind power generation systems integrated with hydrogen storage technologies. As a recipient of multiple prestigious grants and awards, he has positioned himself as a leading early-career researcher in the intersection of mechanical transmission, electrical control, and renewable energy integration.

Profile

Scopus

Education

Dr. Yin received his Ph.D. in Energy Power and Mechanical Engineering from North China Electric Power University (NCEPU), Beijing, in 2019, following a direct transfer from his Master’s program due to outstanding academic performance. During his doctoral studies, he also served as a visiting Ph.D. candidate at the University of New South Wales, Sydney, from 2017 to 2018, where he deepened his knowledge in electrical engineering and control systems. His undergraduate and initial graduate training were also completed at NCEPU, where he built a solid foundation in energy systems and mechanical engineering.

Experience

Since joining SDUT in 2019, Dr. Yin has advanced from lecturer to associate professor and currently supervises Master’s research students while also coordinating and lecturing undergraduate courses such as New Energy Power Generation Technology and Condition Monitoring. In parallel, he was appointed a Youth Outstanding Researcher in Shandong Province, a recognition granted to top academic talents. Prior to this, his early career included extensive involvement in national-level research programs focused on wind turbine systems and energy storage technologies.

Research Interests

Dr. Yin’s research focuses on the dynamics, modeling, and optimization of wind power generation systems, especially those employing speed regulating differential mechanisms (SRDM). His work also explores robust control strategies for hybrid-drive wind turbines integrated with hydrogen energy storage systems to enhance grid-friendly operation. His interests extend to mechanical vibration theory, electrical machine control, and system-level energy optimization. He is particularly known for developing simulation models and experimental verifications of hybrid wind-hydrogen systems, bridging theoretical concepts with practical engineering applications.

Awards

Dr. Yin has been recognized with several prestigious honors, including the Excellent Doctoral Dissertation Award from NCEPU (Top 5%) in 2019 and the Youth Outstanding Researcher Award by the Shandong provincial government (Top 1%) the same year. He has also been awarded the National Teacher Qualification Certificate and was named an Excellent Teacher by SDUT in 2021 (Top 1%). Additionally, he has received multiple first-class scholarships throughout his academic career and was acknowledged as an Excellent Reviewer at IEEE I&CPS Asia 2020. His supervision excellence is also evidenced by two undergraduate theses being named among SDUT’s top 2%.

Publications

Dr. Yin has authored numerous academic works, among which the following seven represent key contributions to his field:

Yin et al., “Advanced Power Curve Modeling for Wind Turbines: A Multivariable Approach with SGBRT and Grey Wolf Optimization,” Energy Conversion and Management, 2025 – cited for its advanced prediction methodology in wind energy performance (SJR Q1; IF 9.9).

Jia, Yin et al., “Performance improvement of active distribution networks…,” CSEE Journal of Power and Energy Systems (Online, 2025) – noted for control strategies in hybrid-drive farms (SJR Q2; IF 6.9).

Yin, Rui, “Research on dynamic characteristics…,” Acta Energiae Solaris Sinica, 2021 – studied mechanical dynamics in SRDM-based systems (SJR Q4; IF 1.069).

Yin et al., “Modeling and simulation analysis of 1.5 MW wind turbine…,” Chinese Science Paper Online, 2016 – explored hydrogen integration in turbines.

Yin et al., “Simulation analysis of wind turbine hydrogen production system…,” Chinese Science Paper Online, 2016 – introduced SRDM-based hydrogen production modeling.

Yin et al., “Analysis of a front-end speed regulation wind turbine with hydrogen storage system,” IEEE I&CPS Asia 2020 – presented hybrid drive designs (IEEE/EI indexed).

Wang, Yin et al., “Fractional-order sliding mode control…,” Journal of Modern Power Systems and Clean Energy, 2023 – focused on voltage stability in hybrid turbines (SJR Q1; IF 6.3).

Conclusion

With a strong academic pedigree, impressive publication record, and a track record of successful project leadership, Dr. Wenliang Yin has emerged as a promising researcher in the fields of wind energy systems and renewable energy integration. His work bridges mechanical design and electrical control, making him a unique contributor to next-generation energy technologies. His excellence in supervision, innovation, and academic service illustrates not only his technical proficiency but also his commitment to advancing the renewable energy discipline in both research and education.

Konan Edmond KOUASSI | Biomass and energy | Best Researcher Award

Dr. Konan Edmond KOUASSI | Biomass and energy | Best Researcher Award

Teacher-researcher at UNA, Ivory Coast

Dr. Kouassi Konan Edmond is a Maître-Assistant in Chemistry (Process Engineering) at the Université Nangui Abrogoua (UNA), Côte d’Ivoire. With extensive expertise in renewable energy, waste valorization, and water treatment processes, he has contributed significantly to the field of sustainable chemical engineering. His research focuses on optimizing biofuel production, energy recovery from biomass, and environmental sustainability. He has participated in multiple international scientific conferences and has authored numerous peer-reviewed publications.

Profile

Scopus

EDUCATION

Dr. Kouassi obtained his Doctorate in Fundamental and Applied Sciences (Chemistry – Process Engineering) from Université Nangui Abrogoua in 2016. His dissertation focused on optimizing vegetable oil transesterification for fuel production using experimental designs and artificial intelligence. He previously earned a Diplôme d’Etudes Approfondies (DEA) in Material Sciences and a Master’s in Physical Chemistry, specializing in thermodynamics and process engineering. His early education includes a Bachelor’s degree in Fundamental Sciences and Applied Chemistry.

EXPERIENCE

Since 2018, Dr. Kouassi has been teaching General Chemistry and Energy Process Engineering at UNA, covering subjects such as thermodynamics, kinetics, and water chemistry. His professional background includes doctoral research at the Laboratory of Industrial Processes and Renewable Energy (LAPISEN) and collaborations with leading researchers in bioenergy and waste valorization. He has also been involved in capacity-building workshops and training programs to advance scientific research methodologies.

RESEARCH INTEREST

Dr. Kouassi’s research focuses on renewable energy production, process optimization, and environmental sustainability. His expertise includes biofuel synthesis, wastewater treatment, solid waste management, and the application of artificial intelligence in chemical engineering. He has extensively studied biodiesel production through transesterification and the valorization of agricultural waste for energy applications. His work contributes to advancing sustainable energy solutions in Côte d’Ivoire and beyond.

AWARDS

Dr. Kouassi has been recognized for his contributions to green chemistry and bioenergy. He has received awards for outstanding research in chemical engineering, including excellence awards for his work on biofuel optimization. His active participation in scientific societies such as the West African Society of Chemistry (SOACHIM) has further established his reputation as a leading researcher in sustainable energy solutions.

PUBLICATIONS

Kouassi Konan Edmond et al. (2018). “Optimization of Rubber Seed Oil Transesterification to Biodiesel Using Experimental Designs and Artificial Neural Networks.” Green and Sustainable Chemistry, cited by multiple energy research articles.

Abollé Abollé & Kouassi Konan Edmond et al. (2017). “Empirical Correlations Between Viscosity, Density, and Cloud Point of Diesel Oil Mixtures with Straight Vegetable Oils.” International Journal of Engineering and Technical Research.

Alain Stéphane Assémian & Kouassi Konan Edmond et al. (2018). “In-Situ Generation of Effective Coagulant to Treat Textile Bio-Refractory Wastewater.” Journal of Environmental Chemical Engineering.

Yao Joseph Adjoumani & Kouassi Konan Edmond et al. (2019). “Modeling and Optimization of Two Clays Acidic Activation for Phosphate Ions Removal.” Journal of Water Resource and Protection.

Horo Koné & Kouassi Konan Edmond et al. (2020). “Thermal Regeneration of Activated Carbon Saturated with Nitrate Ions.” International Journal of Advanced Engineering, Management, and Science.

ZRAN Vanh Eric-Simon & Kouassi Konan Edmond et al. (2022). “Valorization of Plantain Peels Waste in Biosorbents for Methylene Blue Removal.” International Journal of Scientific Research and Reviews.

Moya Joëlle Carole Akossi & Kouassi Konan Edmond et al. (2023). “Transesterification of Vegetable Oils into Biodiesel by an Immobilized Lipase: A Review.” Biofuels.

CONCLUSION

Dr. Kouassi Konan Edmond’s extensive research output, scientific leadership, and contributions to process engineering and environmental sustainability make him an outstanding candidate for the Best Researcher Award. His work advances renewable energy solutions and promotes sustainable industrial practices, highlighting his impact on academia and society.

Anietie Etim | Clean Fuels | Innovative Solutions for Environmental Challenges Award

Dr Anietie Etim | Clean Fuels | Innovative Solutions for Environmental Challenges Award

Durban University of Technology, South Africa

Dr. Anietie Okon Etim is a distinguished Chemical Engineer specializing in renewable energy, sustainable fuels, and green catalysis. With a PhD from Durban University of Technology (2018-2022), an MSc from Obafemi Awolowo University (2013-2015), and a BSc from Nnamdi Azikiwe University (2004-2009), he has built a robust academic foundation. His research focuses on biomass conversion, waste recycling, and environmental sustainability. Dr. Etim is a postdoctoral researcher at Durban University of Technology, contributing to clean energy and biomass valorization. He is a member of prestigious organizations like SAICHE, NSE, and WSSET, and has received numerous awards, including the NRF postdoctoral fellowship. A prolific researcher, he has published extensively and presented at international conferences.

Professional Profile

Google Scholar

Scopus

Education 🎓

  • PhD Chemical Engineering, Durban University of Technology, South Africa (2018-2022)
  • MSc Chemical Engineering, Obafemi Awolowo University, Nigeria (2013-2015)
  • BSc Chemical Engineering, Nnamdi Azikiwe University, Nigeria (2004-2009)

Dr. Etim’s academic journey reflects his dedication to advancing sustainable energy solutions through innovative research and interdisciplinary collaboration.

Experience 💼

  • Postdoctoral Researcher, Durban University of Technology (2023–Present): Leading clean energy research, biomass valorization, and co-supervising students.
  • Research Assistant, Durban University of Technology (2020–2021): Conducted research on waste cooking oil decolorization.
  • Doctoral Researcher, Durban University of Technology (2018–2022): Explored advanced biomass liquid fuels and feedstock hybridization.
  • Master’s Researcher, Obafemi Awolowo University (2012–2015): Optimized biodiesel synthesis using heterogeneous catalysts.

His expertise spans green catalysis, process optimization, and bioenergy systems.

Awards and Honors 🏆

  • NRF Postdoctoral Fellowship Award (2023)
  • DUT Doctoral Training/Support Award (2022)
  • S&F-NRF-TWAS African Renaissance PhD Fellowship (2018–2021)
  • Invited speaker at global conferences like GSPEE2024, Catalysis Expo-2022, and Biofuels Meet 2022.

These accolades highlight his contributions to sustainable energy and environmental research.

Research Focus 🔬

Dr. Etim’s research focuses on:

  • Renewable energy and sustainable fuels 🌱
  • Biomass conversion to fuels and petrochemicals ⚙️
  • Waste recycling and bioenergy ♻️
  • Green catalysis and biosorbents �
  • Wastewater treatment and environmental pollution control 💧
  • Simulation, modeling, and optimization of bio-processing systems 📊

His work aims to address climate change and promote sustainable development.

Publication Top Notes 📚

  1. Sustainable biodiesel production via biogenic catalyzed transesterification of baobab oil methyl ester and optimization process.
  2. Synthesis of a highly efficient mesoporous green catalyst from waste avocado peels for biodiesel production.
  3. Recursive Neural Network–Particle Swarm optimization of biodiesel from Hevea brasiliensis.
  4. A novel green bio-composite catalyst for linseed-marula oil blend methyl ester production.
  5. Evaluation of in-situ and ex-situ hybridization in transesterification of vegetable oils.
  6. Optimization of flaxseed oil methyl ester synthesis using bio-alkaline catalyst.
  7. Green heterogeneous catalyst from bicomponent biowaste for linseed oil methyl ester.
  8. Potential of Carica papaya peels in transesterification of used vegetable oil.
  9. Transesterification and optimization of marula seed oil methyl ester synthesis.
  10. Effectiveness of biogenic waste-derived catalysts in biodiesel production.
  11. Application of agricultural waste-based catalysts in biodiesel synthesis.
  12. Potential of ripe plantain peels as an eco-friendly catalyst for biodiesel synthesis.

Conclusion 🌍

Dr. Anietie Okon Etim is a leading researcher in renewable energy and sustainable chemical engineering. His innovative work in biomass conversion, green catalysis, and waste valorization has significantly contributed to environmental sustainability. With numerous publications, awards, and international recognitions, Dr. Etim continues to drive advancements in clean energy and climate change mitigation. His dedication to research and education inspires future generations to pursue sustainable solutions for a greener planet.

Eliseu Monteiro | Energy | Best Researcher Award

Assist. Prof. Dr Eliseu Monteiro | Energy | Best Researcher Award

Asssitant Professor, University of Porto, Portugal

Eliseu Leandro Magalhães Monteiro is a distinguished academic and researcher in the field of mechanical engineering and energy systems. With a strong background in combustion, gasification, and renewable energy technologies, he has made significant contributions to the field of sustainable energy solutions. Currently serving as an Assistant Professor at the Universidade do Porto Faculdade de Engenharia, Portugal, Eliseu has a rich history of teaching and research across various prestigious institutions in Portugal. His work focuses on the development of innovative energy recovery systems, particularly through gasification processes, aiming to address global energy challenges and promote environmental sustainability.

Professional Profile

Orcid

Scopus

Education 🎓

Eliseu Monteiro holds a Ph.D. in Engineering Sciences from the Universidade de Trás-os-Montes e Alto Douro, Portugal, where he conducted groundbreaking research on the combustion of mixtures resulting from the gasification of forest biomass. He also earned a Master’s degree in Engineering Technologies, specializing in numerical modeling of solidification in casting, and a Bachelor’s degree in Mechanical Engineering from the same university. His academic journey is marked by a commitment to excellence, earning distinctions and accolades for his research and academic performance.

Experience 💼

Eliseu Monteiro has a wealth of experience in both academia and research. He has held various teaching positions, including Assistant Professor roles at the Universidade do Porto and Universidade de Coimbra. Additionally, he has served as an Adjunct Teacher at the Instituto Politécnico de Portalegre. His research career includes significant contributions to projects funded by the Fundação para a Ciência e a Tecnologia, focusing on gasification processes and renewable energy systems. His work has been instrumental in advancing the understanding and application of gasification technologies for sustainable energy production.

Awards and Honors 🏆

Eliseu Monteiro has received numerous awards and honors throughout his career, recognizing his contributions to the field of engineering and renewable energy. His Ph.D. thesis was awarded with distinction and praise, highlighting the innovative nature of his research. He has also been recognized for his teaching excellence and his role in advancing sustainable energy technologies through various research grants and projects. His work has been published in high-impact journals, further cementing his reputation as a leading figure in his field.

Research Focus 🔬

Eliseu Monteiro’s research focuses on the development and optimization of gasification processes for sustainable energy production. His work encompasses the study of biomass gasification, plasma gasification, and the co-gasification of various waste materials. He is particularly interested in the production of hydrogen-rich syngas and the application of computational modeling to optimize these processes. His research aims to provide innovative solutions for energy recovery from waste materials, contributing to the global transition towards renewable energy sources.

Publication Top Notes 📚

  1. “Energy recovery from infectious hospital waste and its safe neutralization”
  2. “Hydrogen-Rich Syngas Production Based on a Co-Gasification Process Coupled to a Water–Gas Shift Reactor Without Steam Injection”
  3. “Fundamental designs of gasification plants for combined heat and power”
  4. “Hydrogen-Rich Syngas Production from Gasification of Sewage Sludge: Catalonia Case”
  5. “Analysis of Forest Residues pretreatment using solar photovoltaic”
  6. “Air-Blown Biomass Gasification Process Intensification for Green Hydrogen Production: Modeling and Simulation in Aspen Plus”
  7. “Hydrogen supply chain: Current status and prospects”
  8. “Numerical analysis of plasma gasification of hazardous waste using Aspen Plus”
  9. “Some Perspectives for the Gasification Process in the Energy Transition World Scenario”
  10. “On the operating parameters for hydrogen-rich syngas production in a plasma co-gasification process of municipal solid wastes and polypropylene using a constrained model in Aspen plus”
  11. “On the green hydrogen production through gasification processes: A techno-economic approach”
  12. “Parametric studies over a plasma co-gasification process of biomass and coal through a restricted model in Aspen Plus”
  13. “Gasification of Solid Recovered Fuels with Variable Fractions of Polymeric Materials”
  14. “Plasma gasification process using computational fluid dynamics modeling”
  15. “Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods: A review”
  16. “Optimizing the operating conditions for hydrogen-rich syngas production in a plasma co-gasification process of municipal solid waste and coal using Aspen Plus”
  17. “Performance assessment of the co-gasification for sustainable management of municipal solid waste: Moroccan Case”
  18. “A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments”
  19. “Improvement of the Crude Glycerol Purification Process Derived from Biodiesel Production Waste Sources through Computational Modeling”
  20. “Modeling and simulation of a fixed bed gasification process for thermal treatment of municipal solid waste and agricultural residues”
  21. “Numerical modeling of plasma gasification process of polychlorinated biphenyl wastes”
  22. “Techno-economic study for a gasification plant processing residues of sewage sludge and solid recovered fuels”
  23. “Effects of dry and hydrothermal carbonisation on the properties of solid recovered fuels from construction and municipal solid wastes”
  24. “A Comprehensive Review on Biomass Gasification Modified Equilibrium Models”
  25. “Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment”
  26. “Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasification using Aspen Plus”
  27. “Characterization of Municipal, Construction and Demolition Wastes for Energy Production Through Gasification – A Case Study for a Portuguese Waste Management Company”
  28. “Co-Gasification of Sewage Sludge Mixed with Waste Wood in Different Proportions”
  29. “Plasma fixed bed gasification using an Eulerian model”
  30. “Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor”
  31. “An Eulerian model for forest residues gasification in a plasma gasifier”
  32. “Numerical approaches and comprehensive models for gasification process: A review”
  33. “Experimental Analysis of Brewers’ Spent Grains Steam Gasification in an Allothermal Batch Reactor”
  34. “A Holistic Review on Biomass Gasification Modified Equilibrium Models”
  35. “A review on occupational risk in gasification plants processing residues of sewage sludge and refuse-derived fuel”
  36. “Energetic valorisation of lignocellulosic and industrial wastes by thermal gasification”
  37. “Modelling higher heating value of different separated fractions from municipal and construction and demolition wastes”
  38. “Solidificação de Metais: Modelação e Simulação”
  39. “Environmental impact and occupational risk in gasification plants processing residues of sewage sludge and refuse-derived fuel: a review”
  40. “Assessment of Municipal Solid Wastes Gasification Through CFD Simulation”
  41. “Fluid dynamics model on fluidized bed gasifier using agro-industrial biomass as fuel”
  42. “Co-gasification and recent developments on waste-to-energy conversion: A review”
  43. “Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant”
  44. “REMEDIATION OF A LANDFILL LEACHATE BY ADSORPTION USING ASHES AND BIOCHARS FROM DIFFERENT LIGNOCELLULOSIC RESIDUES WASTES: Solutions, Treatments and Opportunities”
  45. “Biomass resources in Portugal: Current status and prospects”
  46. “Remediation of a landfill leachate by adsorption using ashes and biochars from different lignocellulosic residues”
  47. “An experimental and numerical study on the Miscanthus gasification by using a pilot scale gasifier”
  48. “Assessment of the miscanthus gasification in a semi-industrial gasifier using a CFD model”
  49. “Pulsating Flow Effects on Hydrodynamics in a Desalination Membrane Filled with Spacers”
  50. “Hydrogen production using plasma gasification with steam injection”

Conclusion 🌍

Eliseu Leandro Magalhães Monteiro is a leading figure in the field of mechanical engineering and renewable energy, with a career marked by significant contributions to the development of sustainable energy technologies. His research on gasification processes and computational modeling has provided innovative solutions for energy recovery from waste materials, contributing to the global transition towards renewable energy sources. Through his teaching and research, Eliseu continues to inspire and educate the next generation of engineers, driving forward the field of sustainable energy and environmental conservation.

Geoffrey Ssebabi Mutumba – Energy Economics – Excellence in Research

Geoffrey Ssebabi Mutumba - Energy Economics - Excellence in Research

Kyambogo University - Uganda

AUTHOR PROFILE

ORCID

🎓 EDUCATIONAL BACKGROUND

Geoffrey Ssebabi Mutumba holds a Ph.D. in Energy Economics and Governance from Makerere University, completed in 2024. His academic journey began with a Bachelor of Arts in Education, specializing in Economics and Geography, followed by a Master of Arts in Economic Policy and Planning, both from Makerere University. Geoffrey's strong foundation in economics has equipped him to contribute significantly to the field of energy economics and policy.

🏫 PROFESSIONAL EXPERIENCE

Geoffrey has been a Senior Lecturer in the Department of Economics at Kyambogo University since 2011. His expertise in economics has also led him to serve as a Visiting Lecturer at the United Nations University for Peace in 2024. Over the years, Geoffrey has become a respected academic, recognized for his contributions to teaching and research in energy economics.

📚 RESEARCH AND PUBLICATIONS

Geoffrey’s research focuses on energy consumption, economic growth, and renewable energy in Uganda. He has published numerous papers in reputable journals, including the "Journal of Energy Research and Reviews" and "SN Business & Economics." His work provides critical insights into the prospects and challenges of energy development in Uganda, particularly in the context of sustainable development.

🎤 CONFERENCE PARTICIPATION

Geoffrey has actively participated in various international conferences, sharing his research findings on energy economics. Notable among these was his presentation on electricity consumption and economic growth in Uganda at the Moi University International Conference in Nairobi, Kenya, in 2020. His involvement in such events highlights his commitment to advancing knowledge in his field.

📘 TEACHING AND CURRICULUM DEVELOPMENT

At Kyambogo University, Geoffrey teaches courses such as Microeconomics, Policy Analysis, and Public Sector Economics at the graduate level. Beyond teaching, he has played a pivotal role in curriculum development, serving as a panelist for the National Curriculum Development Centre (NCDC) and contributing to the integration of tax education into Uganda's secondary school curriculum.

🤝 COMMUNITY ENGAGEMENT

Geoffrey is deeply involved in community work, particularly in education and curriculum development. He has served as a consultant for the Uganda Revenue Authority (URA) and contributed to various educational initiatives at the Ministry of Education and Sports. His dedication to improving education in Uganda is evident through his ongoing efforts in curriculum reform and teacher education programs.

📈 LEADERSHIP AND SERVICE

Geoffrey has demonstrated strong leadership within Kyambogo University, where he served as the Faculty and Departmental Examination Coordinator from 2016 to 2023. He also held the position of Secretary Finance for the Kyambogo University Academic Staff Association from 2015 to 2020, where he contributed to the financial management and welfare of academic staff.

NOTABLE PUBLICATION

Title: Electricity Consumption and Economic Growth: Evidence from the East African Community
Journal: Energy Strategy Reviews
Year: 2024
DOI: 10.1016/j.esr.2024.101431

Title: Renewable and Non-Renewable Energy Consumption and Economic Growth in Uganda
Journal: SN Business & Economics
Year: 2022
DOI: 10.1007/s43546-022-00220-7

Title: The Effects of Gross Domestic Product and Energy Consumption on Carbon Dioxide Emission in Uganda (1986-2018)
Journal: International Journal of Energy Economics and Policy
Year: 2022
DOI: 10.32479/ijeep.12552

Title: Readiness of Nuclear Energy Development in Uganda
Journal: Journal of Energy Research and Reviews
Year: 2022
DOI: 10.9734/jenrr/2022/v10i130244

Cenker Aktemur – Energy management in buildings – Best Researcher Award

Cenker Aktemur - Energy management in buildings - Best Researcher Award

Sivas University of Science and Technology - Turkey

AUTHOR PROFILE

GOOGLE SCHOLAR

CENKER AKTEMUR

Cenker Aktemur is an Assistant Professor in the Department of Mechanical Engineering at Sivas University of Science and Technology in Turkey. He completed his Ph.D. in Mechanical Engineering at Kocaeli University in 2023, where he specialized in enhancing the thermodynamic performance of solar-assisted absorption and vapor compression cascade refrigeration cycles. He holds an MSc and BSc in Mechanical Engineering from Eastern Mediterranean University.

ACADEMIC AND PROFESSIONAL EXCELLENCE

Dr. Aktemur's academic journey is marked by consistent excellence. During his Ph.D., he maintained a GPA of 3.52/4 and was awarded a prestigious Ph.D. scholarship by the Council of Higher Education (CoHE) in the field of Renewable Energy and Energy Storage, under the 100/2000 Program. His master's thesis focused on the energy and economic analyses of natural gas heating systems, while his undergraduate capstone project involved the design and manufacturing of a reverse shoulder prosthesis.

PROFESSIONAL EXPERIENCE

Dr. Aktemur has diverse work experience, including a role as an R&D Engineer at CMAK Crane Systems and a compulsory internship at Yılmazlar Steel Construction and Machinery Manufacturing. His professional expertise extends to advanced software skills in AutoCAD, CATIA, SolidWorks, and Siemens NX, among others.

HONORS AND AWARDS

Dr. Aktemur has received numerous honors and awards, including a Ph.D. scholarship for his research in renewable energy, and consistent recognition for academic excellence during his undergraduate and master's studies. He has also completed several advanced courses and certifications in engineering software and tools.

SCIENTIFIC CONTRIBUTIONS

An active researcher, Dr. Aktemur has contributed to the scientific community through his publications and role as a scientific referee for several high-impact journals, including Applied Thermal Engineering, Solar Energy, and Energy & Environment. His ORCID ID is 0000-0001-9045-832X, and his research profiles are accessible on platforms such as Google Scholar, WoS, and Scopus.

Dr. Aktemur's dedication to advancing the field of mechanical engineering, particularly in renewable energy and refrigeration systems, underscores his commitment to academic and professional excellence.

NOTABLE PUBLICATIONS

Optimising of thermal insulation thickness based on wall orientations and solar radiation using heating-degree hour method 2024

Thermodynamic Optimization of Utilization LiBr + LiCl/H2O Solution Mixture on a Single-Effect Absorption Chiller Driven by Solar Energy 2023 (2)

Thermodynamic optimisation of a booster-ejector vapour compression refrigeration system using solar energy and R152a/Cu nano-refrigerant 2023 (5)

Thermodynamic performance enhancement booster assisted ejector expansion refrigeration systems with R1270/CuO nano-refrigerant 2022 (12)

Comparative energy and exergy analysis of a subcritical cascade refrigeration system using low global warming potential refrigerants 2021 (52)