Mohammad Sadegh Shakeri | Materials Science and Engineering | Innovations in Materials Engineering Award

Dr. Mohammad Sadegh Shakeri | Materials Science and Engineering | Innovations in Materials Engineering Award

Assistant Professor at Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland

Dr. Mohammad Sadegh Shakeri is an accomplished materials scientist with extensive expertise in magnetic materials and nanostructures. Currently an Assistant Professor at the Institute of Nuclear Physics Polish Academy of Sciences in Krakow, Poland, he specializes in the study of photocatalytic materials, their synthesis, and applications. With a solid foundation in materials science and engineering, his academic journey reflects a commitment to advancing the field through research and innovation.

Profile

Orcid

Education

Dr. Shakeri completed his education in Materials Science and Engineering, earning a Ph.D. from the Materials & Energy Research Centre in Iran (2017). His academic credentials include a Master’s degree from the University of Tabriz (2012) and a Bachelor’s degree from Sahand University of Technology (2009). His educational background has equipped him with the theoretical knowledge and practical skills necessary for tackling complex challenges in materials research.

Experience

Dr. Shakeri has held several notable positions throughout his career. He is currently engaged as an Assistant Professor in the Department of Magnetic Materials and Nanostructures. Prior to this, he served as a postdoctoral researcher at the same institute and held visiting researcher roles in Germany and France. His diverse experience also includes positions as a lecturer at Faradars Virtual University and as an R&D specialist in a private company, where he applied his scientific expertise in practical settings.

Research Interests

His research interests focus on the synthesis and characterization of advanced materials, particularly in the realm of photocatalysis and nanotechnology. Dr. Shakeri investigates the mechanisms underlying material properties, employing techniques such as density functional theory (DFT) and molecular dynamics simulations to explore the electronic structures and behavior of nanostructures during various processes, including laser irradiation.

Awards

Dr. Shakeri has received several prestigious awards recognizing his contributions to materials science. In 2023, he was honored with the Polish Ministry of Science and Education Scholarship for Outstanding Young Scientists. He also received the PSRS Award from the Polish Synchrotron Radiation Society in 2024 and was named Scientist of the Year by the Institute of Nuclear Physics Polish Academy of Sciences in the same year. His accolades reflect his dedication to excellence in research and teaching.

Publications

Dr. Shakeri has authored and co-authored a number of publications in reputable journals, contributing significantly to the field of materials science. Key publications include:

Shakeri, M.S. et al. “Effect of hydroxyapatite coating on corrosion behavior and nickel release of NiTi shape memory alloy,” Materials and Corrosion, 2014. DOI: 10.1002/maco.201206950.

Maleki-Ghaleh, H., Shakeri, M.S. “Electrochemical and cellular behavior of ultrafine-grained titanium in vitro,” Materials Science and Engineering C, 2014. DOI: 10.1016/j.msec.2014.03.001.

Shakeri, M.S. et al. “Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells,” Journal of Materials Engineering and Performance, 2016. DOI: 10.1007/s11665-016-2086-4.

Delbari, S.A., Shakeri, M.S. et al. “Characterization of TiC ceramics with SiC and/or WC additives,” Journal of the Taiwan Institute of Chemical Engineers, 2021. DOI: 10.1016/j.jtice.2021.05.039.

Yu, H., Shakeri, M.S. et al. “HRTEM study and mechanical properties of ZrB2–SiC composite,” International Journal of Refractory Metals and Hard Materials, 2022. DOI: 10.1016/j.ijrmhm.2022.105789.

His work has been well-cited in the scientific community, underscoring his impact on the field.

Conclusion

In summary, Dr. Mohammad Sadegh Shakeri is a dedicated researcher and educator whose contributions to materials science are noteworthy. His extensive background in materials engineering, combined with a focus on innovative research and collaboration, positions him as a leading figure in the study of magnetic materials and nanostructures. Through his teaching and research, he continues to inspire future generations of scientists and advance the understanding of complex materials systems.

Ameelia Roseline | Materials Science and Engineering | Best Researcher Award

Dr. Ameelia Roseline | Materials Science and Engineering | Best Researcher Award

Continue reading “Ameelia Roseline | Materials Science and Engineering | Best Researcher Award”

SunJae Yoo | Concrete Structure | Best Scholar Award

Dr SunJae Yoo | Concrete Structure | Best Scholar Award

Postdoctoral Researcher, Korea University, South Korea

Dr. Yoo Sun-Jae is a dedicated researcher specializing in advanced materials and structural engineering, particularly focusing on carbon fiber-reinforced polymer (CFRP) bars, ultra-high-performance fiber-reinforced concrete (UHPFRC), and fire-resistant concrete structures. With a Ph.D. from Korea University, his work explores bonding behaviors, impact resistance, and fire-damaged concrete rehabilitation. Dr. Yoo has contributed significantly to the development of lightweight high-strength concrete using nanotechnology and innovative shelter-in-place (SIP) infrastructure. His research combines experimental and analytical approaches to advance sustainable and resilient construction technologies. Recognized for his excellence, he has received awards such as the Best Poster Award from the Korean Society of Civil Engineers and the Best Paper Award from the Journal of the Korean Society of Hazard Mitigation. Dr. Yoo is also an active contributor to international conferences and holds patents for concrete reinforcement technologies.

Professional Profile

Google Scholar

Education 🎓

Dr. Yoo Sun-Jae earned his Bachelor’s (2019), Master’s (2021), and Ph.D. (2025) in Civil Engineering from Korea University, Seoul, Republic of Korea. His Ph.D. dissertation focused on the bond performance of ribbed CFRP bars in UHPFRC after exposure to elevated temperatures, achieving a GPA of 4.23/4.50. During his Master’s, he investigated strengthening methods for two-way slabs under low-velocity impact loading, graduating with a GPA of 3.85/4.50. His academic journey reflects a strong foundation in structural engineering, reinforced by his advisor, Professor Young Soo Yoon. Dr. Yoo’s education has equipped him with expertise in advanced materials, concrete behavior, and innovative construction techniques.

Experience 🔧

Dr. Yoo Sun-Jae has extensive research experience, including projects funded by the National Research Foundation of Korea (NRF) and the Korea Agency for Infrastructure Technology Advancement. His work spans the development of smart strengthening techniques for fire-damaged concrete structures, CFRP reinforcements with zero corrosion, and lightweight high-strength concrete using nanotechnology. He has also contributed to the development of SIP infrastructure and DfMA-based modules for curved bridges. Dr. Yoo’s hands-on experience includes experimental analysis, material development, and structural optimization, making him a versatile researcher in civil engineering and construction materials.

Awards and Honors 🏆

Dr. Yoo Sun-Jae has been recognized for his outstanding contributions to civil engineering. In 2023, he received the Best Poster Award from the Korean Society of Civil Engineers. Earlier, in 2021, he was honored with the Best Paper Award from the Journal of the Korean Society of Hazard Mitigation. His academic excellence was acknowledged in 2018 with the Academic Achievement Excellence Award from Korea University. These accolades highlight his dedication to advancing research in structural engineering and innovative construction materials.

Research Focus 🔍

Dr. Yoo Sun-Jae’s research focuses on the bonding behavior of CFRP bars in UHPFRC, particularly under elevated temperatures and fire conditions. He investigates the impact resistance, fire resistance, and development length of concrete structures reinforced with advanced materials. His work also includes the development of lightweight high-strength concrete using carbon nanotubes (CNTs) and the optimization of SIP infrastructure. Dr. Yoo’s research integrates experimental and analytical approaches to enhance the durability, safety, and sustainability of modern construction materials and techniques.

Publication Top Notes 📚

  1. Flexural behavior of ribbed CFRP bars in UHPFRC beams with lap-splice connection.
  2. Degradation of flexural bond of CFRP bar in UHPFRC after exposure to elevated temperature.
  3. Reinforcing effect of CNT on the microstructure and creep properties of high-strength lightweight concrete.
  4. Flexural bond behavior and development length of ribbed CFRP bars in UHPFRC.
  5. Structural benefits of using carbon nanotube reinforced high-strength lightweight concrete beams.
  6. Bonding behavior and prediction of helically ribbed CFRP bar embedded in UHPC.
  7. Comparative bond-slip response of ribbed CFRP bar to UHPC after exposure to high temperature.
  8. Evaluation of residual bond behavior of CFRP and steel bars embedded in UHPC after elevated temperature.
  9. Effect of design code and evacuation information on strategic location of SIP in light rail stations.
  10. Effect of strengthening methods on two-way slab under low-velocity impact loading.
  11. Effect of internal curing on shrinkage and creep of self-compacting lightweight concrete.
  12. Post-heating flexural performance of UHPFRC members reinforced with ribbed CFRP bar.
  13. Influence of elevated temperature on the flexural behavior of spliced CFRP bars in UHPFRC beams.

Conclusion 🌟

Dr. Yoo Sun-Jae is a highly accomplished researcher whose work in CFRP bars, UHPFRC, and fire-resistant concrete structures has significantly advanced the field of civil engineering. His innovative approaches to material development and structural optimization have earned him numerous accolades and patents. Through his research, Dr. Yoo continues to contribute to the development of sustainable, resilient, and high-performance construction technologies, ensuring safer and more durable infrastructure for the future.

Xuemei Wei | Materials Science and Engineering | Best Paper Award

Dr Xuemei Wei | Materials Science and Engineering | Best Paper Award


Assistant Researcher, Shaoxing University, China

Dr. Xuemei Wei is an accomplished researcher specializing in metal-organic chemistry and catalysis. She holds a Ph.D. in Physical Chemistry from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. Her expertise lies in the development of nano-catalytic materials for environmental and energy applications. With over 12 SCI publications in high-impact journals, she has made significant contributions to catalyst design and chemical transformations. Currently, she serves as an Assistant Researcher at Shaoxing University, where she advances research in pharmaceutical and chemical sciences. Her work integrates innovative nanomaterials to address environmental challenges and sustainable energy solutions.

PROFESSIONAL PROFILE

Scopus

EDUCATION

🎓 Ph.D. in Physical Chemistry – Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (2018-2021)
📝 Thesis: Design and Mechanism of Efficient Carbonylation Catalysts under Ambient Conditions.
🎓 M.Sc. in Inorganic Chemistry – Inner Mongolia University (2013-2016)
🎓 B.Sc. in Chemistry – Jilin Normal University (2009-2013)

PROFESSIONAL EXPERIENCE

🔬 Assistant Researcher – Shaoxing University, College of Chemistry and Chemical Engineering (2021-Present)
🔍 Focus: Development of nano-catalytic materials for industrial and environmental applications.
🧪 R&D Specialist – Changchun Zhongke Haorong New Materials Research Co., Ltd. (2016-2018)
🚀 Developed and optimized catalytic materials for large-scale industrial use.

AWARDS & HONORS

🏆 Recognized for research contributions in metal-organic chemistry.
📜 Multiple SCI-indexed publications in top-tier journals.
🌍 Acknowledged for innovative approaches in environmental catalysis.

RESEARCH FOCUS

🧪 Catalysis Under Ambient Conditions: Development of carbonylation catalysts for industrial applications.
🌱 Environmental Nanomaterials: Engineering nanomaterials for pollutant degradation and remediation.
Sustainable Energy Catalysis: Exploring hydrodeoxygenation reactions for green chemistry solutions.

PUBLICATION TOP NOTES

📄 Turning on Ambient Conditions Hydrodeoxygenation of Biobased Aromatic Alcohols – Energy Conversion and Management (2025)
📄 Construction of MXene-loaded Nanoscale Zero-Valent Iron for ReO4-/TcO4- Sequestration – Separation and Purification Technology (2024)
📄 Deciphering the Facet-Dependent Scavenging Potential of α-Fe2O3 Nanocrystals – Applied Surface Science (2024)
📄 Crucial Size Effect on Dicarbonylation of Acetylene Over Pd/CsHPMo Catalysts – Dalton Transactions (2024)
📄 Targeting Phosphodiesterase 4 as a Therapeutic Strategy for Cognitive Improvement – Bioorganic Chemistry (2023)
📄 Vesicular BiVO4 Nanostructures Modified by g-C3N4 Quantum Dots – Materials Science in Semiconductor Processing (2024)
📄 Synergistic Effect of Hematite Facet and Pd Nanocluster for Acetylene Dicarbonylation – Molecular Catalysis (2021)
📄 Strong Metal-Support Interactions Between Palladium Nanoclusters and Hematite – New Journal of Chemistry (2020)
📄 Highly Efficient Selective Dicarbonylation of Acetylene Catalyzed by Palladium Nanosheets – New Journal of Chemistry (2020)
📄 Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous – Progress in Chemistry (2020)
📄 Advances in Research on Structure-Activity Relationship in Hydrogenation Catalysts – Chemical Industry and Engineering Progress (2020)
📄 Support Morphology-Dependent Catalytic Activity of Co/CeO2 for Phenol Hydrogenation – New Journal of Chemistry (2020)

CONCLUSION

Dr. Xuemei Wei is a leading researcher in catalysis and nanomaterials, making significant strides in environmental and sustainable chemistry. Her contributions to metal-organic chemistry and catalytic performance have earned her recognition in top scientific journals. As an Assistant Researcher at Shaoxing University, she continues to develop innovative solutions for industrial and environmental challenges. 🚀🔬

Hang Xu | Mechanical Engineering | Best Researcher Award

Dr Hang Xu | Mechanical Engineering | Best Researcher Award

Assistant Professor, Concordia University, Canada

Dr. Hang Xu is an Assistant Professor in the Department of Mechanical, Industrial, and Aerospace Engineering at Concordia University, Montreal, Canada. With a Ph.D. in Mechanical Engineering from McGill University and an MSc in Aircraft Design from Beijing University of Aeronautics and Astronautics, Dr. Xu specializes in mechanical metamaterials, aerospace structures, soft robotics, and composite materials. His research focuses on developing advanced materials with programmable morphing and motion for applications in aerospace, sensors, actuators, and medical devices. Prior to joining Concordia, he held research positions at Imperial College London, Siemens Canada, and McGill University. Dr. Xu is recognized for his contributions to materials science and engineering, earning awards such as the Best Presentation Award at CSME/CFD2024 and the Teaching Excellence Award at Concordia University.

Professional Profile

Orcid

Scopus

Education 🎓

Dr. Hang Xu earned his Ph.D. in Mechanical Engineering from McGill University (2013–2018), where he worked under the supervision of Dr. Damiano Pasini. He completed his Master’s in Aircraft Design at Beijing University of Aeronautics and Astronautics (2011–2013) under Dr. Yuanming Xu. His Bachelor’s degree in Aircraft Design and Engineering was obtained from Shenyang Aerospace University (2007–2011), supervised by Dr. Weiping Zhang. His academic journey reflects a strong foundation in aerospace and mechanical engineering, with a focus on advanced materials and structural design. Dr. Xu’s education has equipped him with expertise in multiscale mechanics, composite materials, and mechanical metamaterials, which he now applies to cutting-edge research and teaching at Concordia University.

Experience 💼

Dr. Hang Xu has a diverse professional background, including roles as a Research Associate at Imperial College London (2020–present), a Postdoctoral Intern at Siemens Canada (2019–2020), and a Postdoctoral Researcher at McGill University (2018–2019). Since 2022, he has been an Assistant Professor at Concordia University, where he teaches and leads research in aerospace and mechanical engineering. His industrial experience at Siemens involved working on aero-derivative gas turbines, while his academic roles have focused on mechanical metamaterials, soft robotics, and composite materials. Dr. Xu’s career bridges academia and industry, combining theoretical research with practical applications in aerospace, robotics, and medical devices.

Awards and Honors 🏆

Dr. Hang Xu has received several accolades, including the Best Presentation Award at the 2024 Canadian Society for Mechanical Engineering (CSME) International Congress and the Teaching Excellence Award from Concordia University in 2023 for his course on Aircraft Design. He was also recognized for his contributions to COVID-19 research at Imperial College London in 2021. His work on mechanical metamaterials and aerospace structures has earned him a reputation as a leading researcher in his field. These awards highlight his excellence in both research and teaching, underscoring his commitment to advancing engineering knowledge and mentoring the next generation of engineers.

Research Focus 🔬

Dr. Hang Xu’s research focuses on mechanical metamaterialssoft roboticscomposite materials, and multiscale mechanics. He aims to develop advanced materials with programmable morphing and motion for innovative applications in aerospace structures, sensors, actuators, and medical devices. His work explores the design and optimization of materials with tailored properties, such as controllable thermal expansion, high stiffness, and programmable deformations. By integrating computational modeling and experimental validation, Dr. Xu’s research bridges the gap between material science and engineering, enabling the creation of next-generation technologies for aerospace, robotics, and healthcare.

Publication Top Notes 📚

  1. Generalized tessellations of superellipitcal voids in low porosity architected materials for stress mitigation
  2. Thermally Actuated Hierarchical Lattices With Large Linear and Rotational Expansion
  3. Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  4. Multiscale isogeometric topology optimization for lattice materials
  5. Multilevel hierarchy in bi-material lattices with high specific stiffness and unbounded thermal expansion
  6. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion

Conclusion 🌟

Dr. Hang Xu is a distinguished researcher and educator in mechanical and aerospace engineering, with a strong focus on mechanical metamaterials, soft robotics, and composite materials. His academic and professional journey, marked by prestigious awards and impactful research, demonstrates his commitment to advancing engineering solutions for real-world challenges. Through his innovative work and dedication to teaching, Dr. Xu continues to inspire and shape the future of engineering.

Zhang Xihua | Environmental Engineering | Best Researcher Award

Assoc. Prof. Dr Zhang Xihua | Environmental Engineering | Best Researcher Award

Associate Professor at Shanghai Polytechnic University, china

Dr. Xihua Zhang is a distinguished researcher affiliated with Shanghai Polytechnic University. With an extensive background in materials science and environmental engineering, Dr. Zhang has significantly contributed to the field of lithium-ion battery recycling and sustainable resource management. His research has been instrumental in advancing mechanochemical methods for metal recovery, selective lithium extraction, and sustainable recycling practices. Over the years, he has published numerous high-impact journal articles, demonstrating his expertise and commitment to addressing critical challenges in resource sustainability.

profile

ORCID

Scopus

Education

Dr. Zhang has a strong academic foundation in materials science and environmental technology. His educational background has equipped him with advanced knowledge in chemical engineering, sustainable material processing, and waste management, which have been pivotal in shaping his research career. Throughout his academic journey, he has developed expertise in mechanochemical and hydrometallurgical processes, focusing on enhancing the efficiency of metal extraction from spent lithium-ion batteries.

Experience

With years of experience in academia and research, Dr. Zhang has collaborated with several leading institutions and experts in the field. His work spans interdisciplinary domains, including energy storage materials, circular economy practices, and green chemistry. He has served as a reviewer for multiple high-impact journals and has contributed to the development of innovative recycling technologies. His research findings have been widely cited, reflecting his influence in advancing environmentally friendly metal recovery processes.

Research Interests

Dr. Zhang’s research interests primarily focus on sustainable materials processing and recycling technologies. His work includes mechanochemical methods for extracting valuable metals from spent lithium-ion batteries, selective recovery of lithium, and environmentally friendly leaching processes. He is also interested in exploring the role of nickel recycling in new energy vehicle industries and the optimization of closed-loop battery recycling methods. His contributions aim to enhance the efficiency and sustainability of battery recycling to support the growing demand for energy storage materials.

Awards

Dr. Zhang has been recognized for his contributions to battery recycling and sustainable resource management. His research has received accolades from academic and industrial communities, reflecting the significance of his work in advancing environmental sustainability. His awards and honors highlight his dedication to pioneering innovative and efficient recycling techniques that align with global efforts to minimize electronic waste and promote a circular economy.

Publication Top Notes

“Mechanism and technological method of leaching metals from waste lithium-ion batteries by synergistic action of natural organic reductants and mechanochemical method” – Published in Separation and Purification Technology, Jan 2025. (Cited: 1)

“Material flow analysis on the critical resources from spent power lithium-ion batteries under the framework of China’s recycling policies” – Published in Waste Management, Nov 2023. (Cited: 6)

“A mechanochemical method for one-step leaching of metals from spent LIBs” – Published in Waste Management, Apr 2023. (Cited: 12)

“Recovery of Li and Co from Spent Li-Ion Batteries by Mechanochemical Integration with NH4Cl” – Published in ACS Sustainable Chemistry & Engineering, May 2022. (Cited: 11)

“Selective Recovery of Lithium from Spent Lithium-ion Batteries Synergized by Carbon and Sulfur Elements” – Published in Acta Chimica Sinica, Aug 2021. (Cited: 5)

“The role of nickel recycling from nickel-bearing batteries on alleviating demand-supply gap in China’s industry of new energy vehicles” – Published in Resources, Conservation and Recycling, Jul 2021. (Cited: 36)

“Recycling of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent lithium-ion batteries using mechanochemical activation and solid-state sintering” – Published in Waste Management, Feb 2019. (Cited: 144)

Conclusion

With a strong publication record, high citation impact, and groundbreaking research in sustainable battery recycling, Dr. Xihua Zhang is a highly deserving candidate for the Best Researcher Award. His work not only advances scientific knowledge but also plays a pivotal role in promoting sustainable and environmentally responsible practices in energy storage and recycling industries

Ping Liu | Materials Science | Best Researcher Award

Mr. Ping Liu | Materials Science | Best Researcher Award

Ping Liu at Chongqing Jiaotong University, China

Liu Ping is a distinguished Lecturer and Doctor of Transportation Engineering at Chongqing Jiaotong University’s College of Aviation. He serves as the deputy director of the Chongqing Key Laboratory of Green Aviation Energy Power and is an active young member of the Prediction and Health Management Branch of the Chinese Aviation Society. With over 20 national invention patents and more than 10 published academic papers, Liu is dedicated to advancing the fields of aero-engine manufacturing and rotary engine technology. His research emphasizes innovation and practical applications, contributing significantly to sustainable aviation solutions.

Profile:

Scopus Profile

Strengths for the Award:

  1. Extensive Research Output: Liu Ping has published over 10 academic papers and holds more than 20 national invention patents. This demonstrates a high level of productivity and innovation in his field, particularly in aero-engine manufacturing and rotary engine technology.
  2. Specialization in Transportation Engineering: As a Doctor of Transportation Engineering and a lecturer at a reputable university, Liu Ping’s academic credentials are solid. His role as deputy director of a key laboratory further emphasizes his leadership and expertise in green aviation energy power.
  3. Interdisciplinary Collaboration: Liu’s involvement in various projects, including dynamic service composition in manufacturing and health management in aviation, indicates an ability to collaborate across disciplines, which is essential in today’s research environment.
  4. Contribution to Innovation: The number of patents obtained showcases Liu Ping’s focus on practical applications of research, which is vital for the advancement of technology and industry practices.
  5. Involvement in Professional Societies: As a young member of the Prediction and Health Management Branch of the Chinese Aviation Society, he demonstrates engagement with the broader research community, contributing to discussions that shape future directions in aviation technology.

Areas for Improvement:

  1. Broader Research Impact: While Liu Ping has a significant number of patents and papers, increasing the visibility and impact of his research through more high-profile publications or collaborations with industry leaders could enhance his recognition in the field.
  2. Engagement in Public Discourse: Liu could benefit from participating in public forums, workshops, and conferences to disseminate his research findings more widely, fostering greater community engagement and awareness of his work.
  3. Mentoring and Guidance: Expanding his role in mentoring junior researchers or students could enhance the academic environment at Chongqing Jiaotong University and help cultivate the next generation of transportation engineers.
  4. Interdisciplinary Research: While Liu has shown a capacity for interdisciplinary work, exploring collaborations with fields such as environmental science or economics could open new avenues for innovative research that addresses broader societal challenges.

Education:

Liu Ping obtained his Doctorate in Transportation Engineering from a prominent university, where he focused on the technological advancements in aviation and energy systems. His rigorous academic training laid the foundation for his expertise in aero-engine manufacturing. He also holds a Master’s degree in a related engineering discipline and a Bachelor’s degree in Transportation Engineering. Throughout his education, Liu honed his research skills and developed a strong analytical framework that continues to guide his work in the field.

Experience:

With extensive experience in academia and research, Liu Ping has been a key figure in the College of Aviation at Chongqing Jiaotong University. In his role, he not only teaches but also leads research initiatives aimed at technological innovation in aviation. His position as deputy director of the Chongqing Key Laboratory of Green Aviation Energy Power allows him to influence and direct critical projects in green aviation technology. Liu has collaborated with various industries and academic institutions, enhancing his understanding of practical applications in transportation engineering.

Research Focus:

Liu Ping’s research primarily centers on aero-engine manufacturing, focusing on the technological innovation and application of rotary engines. He explores sustainable energy solutions in aviation, aiming to enhance efficiency and reduce environmental impact. His work in the Chongqing Key Laboratory of Green Aviation Energy Power emphasizes the integration of cutting-edge technologies in the aviation sector. Liu’s commitment to innovation is evident in his numerous patents and publications, which aim to bridge the gap between theoretical research and real-world applications in transportation engineering.

Publication Top Notes:

  • A new car-following model with consideration of anticipation driving behavior
  • Fast threshold selection for grayscale images based on two-dimensional fuzzy renyi’s entropy and quantum genetic algorithm
  • A self-adaptive dynamic service composition and optimization framework for manufacturing resources
  • Two-step and likelihood methods for HIV viral dynamic models with covariate measurement errors and missing data
  • Analysis of longitudinal and survival data: Joint modeling, inference methods, and issues
  • An unexpected triammine(oxalato)platinum(II) complex obtained from the aqueous solution of tetraammineplatinum(II) oxalate
  • Study of monostatic and bistatic polarimetric scattering from the two-dimensional Gauss rough surface characterized by textures
  • Image quality evaluation based on contrast sensitivity function
  • Ultrasonic micro-flow measurement based on improved phase-difference method
  • The research on the new ultra-precision polishing instrument of the internal surface in the elbow

Conclusion:

Liu Ping is a strong candidate for the Best Researcher Award due to his impressive research output, significant contributions to the field of transportation engineering, and active engagement in the academic community. By addressing areas for improvement, particularly in expanding the reach and impact of his research, he could further solidify his position as a leading figure in transportation engineering and innovation. His commitment to advancing technology, combined with a focus on practical applications, positions him well for future accolades and contributions to the field.

Ilaria Sebastiani | Structural Engineering | Best Researcher Award

Mrs. Ilaria Sebastiani | Structural Engineering | Best Researcher Award

Structural engineering, Freelance, Italy

Ilaria Sebastiani is a dedicated Civil Engineer with a focus on project management and structural design. Born on May 10, 1995, in Italy, she has developed expertise in managing complex construction projects, integrating advanced technologies like BIM for improved project outcomes. Her commitment to innovation and sustainability in civil engineering has made her a prominent figure in her field. 🌍🏗️

Publication Profile

ORCID

Strengths for the Award

  1. Educational Background:Ilaria has a strong educational foundation, holding a Master’s degree in Civil Engineering with a perfect score and a Master’s in Project Management with BIM, showcasing her expertise in both technical and managerial aspects of engineering projects.
  2. Professional Experience:With extensive hands-on experience as a Designer and Project Manager at Studio Masciotta s.r.l., Ilaria has been involved in significant projects, including seismic verifications and hydraulic tunnel improvements. This practical experience adds to her research credibility.
  3. Research Contributions:Ilaria has contributed to important research projects and has co-authored publications that address contemporary challenges in construction, such as energy analysis and material reusability. Her work is presented at significant conferences, indicating her active participation in the research community.
  4. Technical Skills:Proficiency in structural calculation software and energy analysis tools demonstrates her capability to handle complex engineering problems, which is essential for impactful research.
  5. Certification and Training:Ongoing professional development, evidenced by certifications in confined space work, PPE usage, and open LCA, reflects her commitment to safety and sustainable practices in engineering.

Areas for Improvement

  1. Language Skills:Ilaria’s proficiency in English is at a B1 level. Improving her English language skills could enhance her ability to engage with a broader international research community and present her work more effectively.
  2. Broader Research Experience:While she has solid experience in civil engineering and construction, exploring interdisciplinary research areas or collaborating on projects outside her immediate field could diversify her research portfolio and broaden her impact.
  3. Publication Output:Increasing the number of publications in high-impact journals and participating in more international conferences could elevate her visibility and recognition in the research community.
  4. Networking and Professional Associations:Engaging more with professional associations and attending workshops or seminars could enhance her networking opportunities, leading to potential collaborations and innovative research ideas.

Education

Ilaria obtained her Master’s in Project Management in Construction Works with BIM from Politecnico di Milano in May 2024, achieving a top grade of 110/110. Prior to this, she earned her Master’s Degree in Civil Engineering – Structures (110/110 laude) and her Bachelor’s in Civil Engineering (102/110) from Sapienza University of Rome. She is also registered as a professional engineer in Rome and holds a certification as a Fire Prevention Professional. 🎓✨

Experience

Currently, Ilaria serves as a Project Manager at Studio Masciotta s.r.l., where she oversees various projects, including the seismic verification of dams and the management of construction activities. Her role involves coordinating site activities, liaising with clients, and conducting technical analyses. Previously, she interned at Eurac Research, where she contributed to EU-funded projects focused on energy efficiency in building renovations. 🏢🔧

Research Focus

Ilaria’s research interests lie in energy analysis, thermal bridge impact assessments, and innovative façade systems. She has actively contributed to projects aimed at enhancing building performance through sustainable design and construction practices, emphasizing the importance of integrating environmental considerations into engineering solutions. 🔍📊

Awards and Honours

Ilaria has been recognized for her contributions to civil engineering through various certifications and participation in significant conferences. Her work on energy efficiency and sustainable construction has positioned her as a promising professional in her field. 🥇🎉

Publication Top Notes

Impact of Thermal Bridges on the Energy Response of Building

Timber-based Façades with Different Connections and Claddings: Assessing Materials’ Reusability, Water Use, and Global Warming Potential

Conclusion

Ilaria Sebastiani’s strong educational background, combined with her practical experience and active engagement in research, positions her as a strong candidate for the Best Researcher Award. By focusing on language skills, expanding her research scope, increasing publication output, and enhancing her professional network, she can further solidify her status as a leading researcher in her field. Her commitment to continuous learning and professional development underscores her potential to contribute significantly to civil engineering and sustainable construction practices.

Ms.Elke Wuyts| Materials Science | Best Researcher Award

Ms.Elke Wuyts| Materials Science | Best Researcher Award

Mehrshad Asghari at School of Mining Engineering, University college of Engineering, University of Tehran, Iran

Elke Wuyts is an accomplished researcher and educator in the field of [specific field, e.g., environmental science, ecology], known for her dedication to [specific areas of focus, e.g., sustainability, conservation]. With a strong academic background and practical experience, she is committed to addressing pressing environmental challenges through innovative research and community engagement. Elke’s work has positively impacted [mention relevant sectors, e.g., environmental policy, conservation strategies].

Profile:

Scopus Profile

Strengths for the Award:

  • Robust Academic Background:
    • The individual holds a Ph.D. in Design from the Illinois Institute of Technology, which indicates a strong theoretical foundation in design and innovation.
    • Additional degrees (M.Pd and B.S.) in relevant fields highlight a well-rounded educational background.
  • Extensive Teaching Experience:
    • The candidate has held numerous academic positions, including Chair Professor and Dean at Asia University, and has been a Distinguished Professor at National Cheng Kung University.
    • Their diverse teaching roles at various prestigious institutions show a commitment to education and mentorship in design and innovation.
  • Leadership Roles:
    • Serving in leadership positions, such as Chair of the Department of Industrial Design and Director of the Institute of Creative Industry Design, demonstrates strong management skills and the ability to influence academic programs and curricula.
  • Research Specialization:
    • Specializations in innovation planning, cultural and creative industries, and industrial design indicate a focus on areas that can significantly impact communities through design-led initiatives.
    • Their involvement in event planning and audience research aligns with community engagement and outreach efforts.

Areas for Improvement:

  • Publications and Research Output:
    • While the individual has extensive experience, showcasing a more substantial portfolio of published research could strengthen their application for the Best Researcher Award.
    • Engaging in collaborative research projects focused on community issues may enhance visibility and impact.
  • Community Engagement Initiatives:
    • Actively participating in or leading community-focused projects or workshops could demonstrate a direct impact on the community, making a stronger case for the Community Impact Award.
    • Developing initiatives that involve students and local stakeholders can foster community engagement.
  • Grant Acquisition:
    • Pursuing research grants aimed at community-based projects can enhance their profile for both awards by demonstrating their ability to secure funding for impactful initiatives.

Education:

  • Elke Wuyts earned her Bachelor’s degree in [specific field, e.g., Biology, Environmental Science, or a related discipline] from [University Name], where she developed a strong foundation in [mention core subjects, e.g., ecology, microbiology, or conservation]. She then pursued her Master’s degree at [University Name], specializing in [specific area of study, e.g., sustainable development, environmental management]. Her academic endeavors culminated in a PhD in [specific field] from [University Name], focusing on [specific research focus or dissertation topic], equipping her with advanced knowledge and research skills in her area of expertise.

Experience:

  • Elke has over [number] years of experience in [specific field or industry, e.g., environmental science, research, or academia]. She currently serves as [current position, e.g., Research Scientist, Lecturer] at [Institution/Company Name], where she leads projects on [mention specific responsibilities or research areas, e.g., ecological conservation, climate change]. Prior to this role, she held positions at [mention previous companies or institutions], where she contributed to significant initiatives in [mention relevant areas, e.g., environmental policy, biodiversity studies].

Skills:

  • Elke possesses a diverse skill set, including expertise in [mention specific skills, e.g., data analysis, field research, environmental modeling]. She is proficient in using [specific software or tools, e.g., GIS, R, or statistical analysis software], and her strong communication skills enable her to effectively convey complex scientific concepts to diverse audiences. Her collaborative abilities are complemented by her project management experience.

Research Focus:

  • Elke’s research primarily focuses on [mention key areas, e.g., ecological conservation, climate change adaptation, biodiversity]. She aims to tackle challenges related to [specific issues, e.g., habitat loss, environmental degradation], and her work seeks to develop evidence-based strategies for promoting sustainability and resilience in ecosystems. Through her research, Elke aspires to make meaningful contributions to the understanding and protection of our natural environment.

Publications 

Conclusion:

  • In conclusion, this candidate is well-suited for both the Research for Community Impact Award and the Best Researcher Award due to their extensive academic qualifications, leadership experience, and research specialization. To strengthen their candidacy further, they could focus on increasing their publication output, enhancing community engagement efforts, and pursuing research grants. With their current trajectory and contributions, they have the potential to make a significant impact in their field and the communities they serve.

Mehrshad Asghari | Materials Science | Best Researcher Award

Dr. Mehrshad Asghari | Materials Science | Best Researcher Award

Mehrshad Asghari at School of Mining Engineering, University college of Engineering, University of Tehran, Iran

Dr. Mehrshad Asghari is a seasoned Senior Mineral Processing Engineer with over a decade of experience in optimizing iron and copper ore processing. Specializing in magnetic separation, gravity, and flotation tests, he has led innovative projects in mineral processing circuits. As head of the mineral processing department in Tehran, he excels in the design, modeling, and simulation of processing equipment, employing advanced techniques such as Discrete Element Method (DEM) and Finite Element Method (FEM). Dr. Asghari is currently pursuing a PhD in Mineral Processing Engineering at Tehran University, where he combines academic rigor with practical applications to enhance ore recovery and sustainability. With seven ISI articles and numerous conference papers, his research significantly contributes to the field.

Profile:

Scopus Profile

Strengths for the Award:

  1. Expertise in Mineral Processing: The individual has a strong background in mineral processing, with specific expertise in magnetic separation, gravity, and flotation tests for iron and copper ores. This technical depth is crucial for research excellence.
  2. Advanced Academic Credentials: Currently pursuing a PhD in mineral processing engineering, they demonstrate commitment to continuous learning and research.
  3. Proven Research Contributions: With seven ISI articles and four conference papers, their active engagement in publishing research shows a significant contribution to the field. The topics cover both theoretical and practical aspects of mineral processing, indicating a balanced approach.
  4. Innovative Use of Technology: Specialization in Discrete Element Method (DEM) and Finite Element Method (FEM) showcases their ability to leverage advanced modeling techniques to improve processing efficiency, as evident from their recent publications.
  5. Comprehensive Experience: Having held leadership roles (Head of Laboratory and Head of Department) for over a decade, they have extensive practical experience in all stages of mineral processing engineering, from design to optimization.
  6. Collaborative Work: Their collaborations with other researchers and institutions demonstrate teamwork and an ability to integrate diverse perspectives into their work.
  7. Professional Certifications: Being a course trainer indicates their dedication to education and knowledge dissemination, which is valuable for fostering future researchers.

Areas for Improvement:

  1. Broader Impact: While the technical contributions are significant, focusing on how their research impacts industry practices or environmental sustainability could enhance their recognition.
  2. Networking: Increased participation in international conferences and collaborations could broaden their visibility and influence in the field.
  3. Public Engagement: Engaging with non-academic audiences through workshops or community outreach can help translate research findings into practical applications, further elevating their profile.
  4. Diversification of Research Topics: Exploring interdisciplinary research that combines mineral processing with other fields, such as environmental science or materials engineering, could lead to innovative solutions and broaden the scope of their work.

Education:

Dr. Mehrshad Asghari is pursuing a PhD in Mineral Processing Engineering at Tehran University, expected to complete in 2024. His academic journey underscores a deep commitment to advancing knowledge in the field of mineral processing. He has previously acquired a Master’s degree in the same discipline, equipping him with a solid foundation in both theoretical and practical aspects. His ongoing research focuses on optimizing processing techniques for iron and copper ores, with a particular interest in utilizing Discrete Element Method (DEM) and Finite Element Method (FEM) for simulation and modeling. Dr. Asghari’s educational background is complemented by certifications in specialized mining software and as a course trainer in mineral processing, showcasing his dedication to continuous learning and knowledge dissemination within the mining and minerals sector.

Experience:

Dr. Mehrshad Asghari has held prominent positions in the field of mineral processing since 2011. He began his career as the Head of the Mineral Processing Laboratory in Tehran, where he conducted essential tests in magnetic separation, gravity, and flotation to optimize plant designs. In 2013, he was promoted to Head of the Mineral Processing Department, where he oversaw comprehensive modeling, simulation, and design documentation for various mineral processing plants. His experience spans all stages of mineral processing engineering, from laboratory experiments to industrial plant operations. Dr. Asghari’s leadership and technical expertise have facilitated significant advancements in processing efficiency and ore recovery. His commitment to innovation is evident in his application of advanced modeling techniques and continuous optimization efforts in mineral processing practices.

Research Focus:

Dr. Mehrshad Asghari’s research focus centers on enhancing the efficiency of mineral processing techniques, particularly for iron and copper ores. His work leverages advanced simulation methods, including Discrete Element Method (DEM) and Finite Element Method (FEM), to analyze and improve processing circuits. Recent studies include optimizing roller screen efficiency for green iron pellets and investigating the elastoplastic behavior of these materials during classification. Dr. Asghari is also dedicated to understanding the relationship between operational parameters and product shape properties in industrial milling. His contributions address critical issues in flotation kinetics, with research aimed at improving copper recovery in industrial circuits. By exploring innovative processing methods, he aims to contribute to sustainable mining practices and environmental protection. Through his publications and ongoing research, Dr. Asghari seeks to bridge the gap between theory and practice in mineral processing engineering.

Publications Top Notes:

  1. Improving the roller screen efficiency to classify green iron pellets using DEM simulation, novel roll design and implementing banana configuration 📈
  2. Implementation of DEM to calibrate contact parameters, as a novel simulation of the elastoplastic behavior of green iron pellet classified by roller screen 📊
  3. Investigation of cigarette effect and elastic-plastic behavior of green iron pellets on the roller screen efficiency 🔍
  4. Relationship among operational parameters, ore characteristics, and product shape properties in an industrial SAG mill ⚙️
  5. Analysis of kinetic models for chalcopyrite flotation: effect of operating parameters 📉
  6. Copper recovery improvement in an industrial flotation circuit: A case study of Sarcheshmeh copper mine 🏗️
  7. Recovery of coal particles from a tailing dam for environmental protection and economical beneficiations 🌍

Conclusion:

In conclusion, the individual demonstrates exceptional qualifications and achievements that align well with the criteria for the Best Researcher Award. Their expertise, innovative research, and leadership in the field of mineral processing engineering position them as a strong candidate. By addressing areas for improvement, they could further enhance their contributions and visibility in the research community, ultimately strengthening their candidacy for this award.