DONG-WOOK KWON – Environmental Engineering – Best Researcher Award

DONG-WOOK KWON - Environmental Engineering - Best Researcher Award

Korea Institute of Science and Technology - South Korea

AUTHOR PROFILE

GOOGLE SCHOLAR

RESEARCH EXPERIENCE

DONG-WOOK KWON has extensive research experience in heterogeneous catalysis for environment and energy. His work focuses on reducing nitrogen oxide (NOx) emissions from combustion exhaust gases through catalytic technology, including selective catalytic reduction (SCR) of NOx by NH3, particularly for diesel engine emission control. Additionally, he has been involved in discovering catalytic materials and improving chemical processes to mitigate atmospheric pollutants from stationary and mobile sources, such as catalytic degradation of NH3, CO, and odorants, and catalytic decomposition of N2O. His research also encompasses the catalytic oxidation of indoor air pollutants to enhance indoor air quality, targeting ambient HCHO & CO oxidation, catalytic oxidation of volatile organic compounds (VOCs), and catalytic decomposition of ozone.

EDUCATION

DONG-WOOK KWON earned his Ph.D. in Environmental Energy Engineering from Kyonggi University, South Korea, in February 2016. His doctoral thesis focused on the roles of promoters and the SCR performance in metal-promoted vanadium-based deNOx catalysts. He also holds a Master's degree (2012) and a Bachelor's degree (2010) in Environmental Energy Engineering from the same institution.

PROFESSIONAL EXPERIENCE

Since March 2020, DONG-WOOK KWON has been a Senior Researcher at the Extreme Materials Research Center, Korea Institute of Science and Technology (KIST). He previously worked as a Researcher at KIST from September 2018 to February 2020 and as a Post-Doc at the Materials Architecturing Research Center, KIST, from July 2017 to August 2018.

REGISTERED PATENTS

DONG-WOOK KWON has several registered patents, including:

  1. NOx reduction catalysts enabling their regeneration at low temperatures (Republic of Korea, Japan, USA, China).
  2. Rare-earth metal vanadates catalysts for nitrogen oxide reduction at low temperatures (Republic of Korea, Japan, USA, China).
  3. Heterogeneous catalysts and preparing methods of the same (Republic of Korea).
  4. Platinum-based catalyst for removing hydrogen at room temperature (Republic of Korea).
  5. Preparing method of platinum/vanadium/titania catalyst for removing ammonia (Republic of Korea).
  6. Vanadium-based denitration catalyst and preparing method of the same (Republic of Korea).

RESEARCH THEMES

His research themes include the catalytic reduction of NOx emissions, discovery and improvement of catalytic materials for atmospheric pollutant mitigation, and the catalytic oxidation of indoor air pollutants. His work significantly contributes to the fields of environmental and energy engineering through advanced catalysis technology.

PATENT CONTRIBUTIONS

DONG-WOOK KWON's patent contributions demonstrate his innovative approaches in developing effective catalysts for environmental applications, showcasing his expertise in creating solutions for low-temperature NOx reduction, ammonia removal, and hydrogen elimination at room temperature.

RESEARCH IMPACT

The impact of DONG-WOOK KWON's research is evident in the advancements in catalytic technologies for emission control and air quality improvement. His contributions provide significant insights and practical solutions for addressing environmental challenges through cutting-edge catalytic processes.

NOTABLE PUBLICATION

Er composition (X)-mediated catalytic properties of Ce1-XErXVO4 surfaces for selective catalytic NOX reduction with NH3 at elevated temperatures 2021 (27)

Unveiling the traits of rare earth metal (RM)-substituted bimetallic Ce0. 5RM0. 5V1O4 phases to activate selective NH3 oxidation and NOX reduction 2020 (28)

A dual catalytic strategy by the nature of the functionalization effect as well as active species on vanadium-based catalyst for enhanced low temperature SCR 2021 (56)

The role of molybdenum on the enhanced performance and SO2 resistance of V/Mo-Ti catalysts for NH3-SCR 2019 (74)

Exploration of surface properties of Sb-promoted copper vanadate catalysts for selective catalytic reduction of NOX by NH3 2018 (62)