Yadian Xie | Materials Science | Best Researcher Award

Yadian Xie - Materials Science and Engineering - Best Researcher Award

Guizhou Minzu University - China

AUTHOR PROFILE

SCOPUS

SUMMARY

Yadian Xie is a dedicated researcher and academic professional based in Guiyang, Guizhou. He serves as a postdoctoral researcher, associate professor, and doctoral supervisor with extensive expertise in chemistry and material sciences. His scientific work spans cutting-edge innovations in low-dimensional materials, particularly black phosphorus. Over the years, Dr. Xie has led several prestigious research projects funded by national and provincial institutions. His dedication to excellence is reflected in his numerous awards and recognitions. With over 60 high-impact publications and multiple invention patents, Dr. Xie plays a vital role in bridging fundamental research with industrial applications.

EDUCATION

Dr. Yadian Xie earned his Ph.D. in Chemistry through a joint program between Université du Québec, Canada, and the National Center for Nanoscience and Technology, China. This cross-institutional academic background has equipped him with a solid foundation in advanced chemical engineering and nanoscience. His postdoctoral fellowship at Peking University further refined his research capabilities, especially in low-dimensional materials. His educational journey reflects a consistent trajectory toward innovation in material chemistry, making him a knowledgeable and skilled figure in his field. This academic experience provides the basis for his interdisciplinary research and mentoring of future scientists.

PROFESSIONAL EXPERIENCE

Since May 2020, Dr. Xie has served as an Associate Professor at the School of Chemical Engineering, Guizhou Minzu University. From 2017 to 2020, he completed a postdoctoral fellowship at Peking University. His academic career demonstrates a steady progression through significant research and teaching roles. At Guizhou Minzu University, he also contributes to guiding graduate students and supervising doctoral research. His responsibilities include teaching, developing research infrastructure, and leading government-funded projects. His dual roles as researcher and educator position him as a leading figure in chemical engineering education and scientific innovation in Guizhou and beyond.

RESEARCH INTEREST

Dr. Xie’s research primarily focuses on the large-scale synthesis and real-world applications of black phosphorus and other low-dimensional materials. He investigates their optical, electrical, and magnetic properties through both experimental and computational approaches. His work extends to application-oriented research on emerging materials used in batteries and gas sensors. His scientific inquiries aim to understand and exploit the structural behaviors of materials at the nanoscale. This multidisciplinary focus allows him to contribute significantly to materials science, energy storage, and environmental applications, making his research both foundational and practically relevant.

AWARD AND HONOR

Dr. Xie has earned several prestigious awards for his academic and scientific achievements. These include the First Prize for Higher Education Teaching Achievement in Guizhou and the Third Prize for Scientific and Technological Progress in the province. He was also named “Most Outstanding Science and Technology Worker” in Guizhou. Notably, he received recognition for a provincial “Golden Course” in Materials Science and led major innovation projects. His honors reflect a strong commitment to education, research, and technological advancement, highlighting his role as a key contributor to the scientific and academic communities in China.

RESEARCH SKILL

Dr. Xie possesses a wide range of research skills, including chemical vapor transport, photonic crystal synthesis, and computational modeling of low-dimensional materials. He has successfully managed several complex research projects funded by national and provincial agencies. His technical expertise includes developing innovative sensors, battery materials, and advanced alumina compounds. He is also proficient in academic writing, peer review, and patent development. These skills allow him to bridge the gap between theoretical materials science and practical applications, ensuring his research delivers measurable impact in both academia and industry.

PUBLICATIONS

Title: Pyridine-functionalized chiral polyoxometalates via in situ degradation
Authors: Yu Xia, Tao Zhang, Luyu Tian, Hailiang Hu, Gang Li
Journal: Journal of Molecular Structure (2025)

Title: Post-synthetic modification strategy to immobilize acidic units within metal-organic frameworks or covalent organic frameworks for boosted proton conductivity
Authors: Hailiang Hu, Yu Xia, Xin Wang, Yadian Xie, Gang Li
Journal: [Journal not specified in source – likely Chemistry or Materials journal, inferred]

Title: Scalable fabrication of graphene-basalt composite fabric via Layer-by-Layer deposition for efficient treatment of Cr(VI) − contaminated water
Authors: Hanqing Yu, Shijiao Li, Zheng Zeng, Xin Tong, Yadian Xie
Journal: Separation and Purification Technology (2025)

Title: Research progress on enhancing particulate matters removal enabled by triboelectric effect
Authors: Yi Dai, Huan Li, Qiyu He, Yadian Xie, Shuangxi Nie
Journal: [Journal not specified in source – possibly Environmental Science or Materials journal]

CONCLUSION

Yadian Xie exemplifies excellence in research, education, and innovation. His work not only enhances academic understanding but also translates to real-world industrial solutions. Through his leadership in high-impact projects and consistent scholarly output, he contributes to advancing both science and technology in China and globally. His mentorship of future researchers and commitment to teaching excellence solidify his role as a prominent figure in chemical engineering. As a recognized academic and innovator, Dr. Xie’s work continues to influence the development of new materials and sustainable technologies with broad societal impact.

Sukarman Sukarman | Materials Science and Engineering | Best Researcher Award

Mr . Sukarman Sukarman | Materials Science and Engineering | Best Researcher Award

Universitas Buana Perjuangan Karawang , Indonesia

Sukarman, a lecturer at Universitas Buana Perjuangan Karawang and a Ph.D. candidate in Mechanical Engineering, is a promising researcher with a strong focus on nanomaterials, nanofluids, and thermal-fluid sciences. He has consistently published Scopus-indexed research, often as the first or corresponding author, demonstrating leadership and commitment to his field. His work addresses relevant issues in energy efficiency and manufacturing, contributing to both academic knowledge and practical industrial applications. While his research output is commendable, there is room for improvement in increasing citation impact, diversifying publication venues, and establishing international collaborations. His current pursuit of a doctoral degree further underscores his dedication to academic advancement. Overall, Sukarman’s research performance, publication consistency, and focus on emerging engineering topics make him a strong candidate for the Best Researcher Award, particularly at the national or institutional level, with significant potential for future growth and wider academic impact.

PROFESSIONAL PROFILE

EDUCATION🎓

Sukarman has built a solid educational foundation in mechanical engineering, beginning with his Bachelor of Engineering degree from Universitas Islam ’45 Bekasi, which he completed in 2014. He continued his academic journey by earning a Master of Engineering degree from Universitas Pancasila in 2018, where he began to deepen his expertise in mechanical systems and thermal engineering. Currently, he is pursuing a Ph.D. in Mechanical Engineering at Universitas Sebelas Maret, Surakarta, further advancing his specialization in nanomaterials, nanofluids, and energy-efficient technologies. His continuous pursuit of higher education reflects a strong commitment to academic growth and research excellence. Throughout his studies, Sukarman has demonstrated a keen interest in integrating theoretical knowledge with experimental research, particularly in thermal performance and material science. His educational trajectory not only supports his current research focus but also positions him well for future contributions to the field of mechanical engineering, both as a scholar and an educator.

PROFESSIONAL EXPERIENCE📝

Sukarman serves as a lecturer in the Department of Mechanical Engineering at Universitas Buana Perjuangan Karawang, where he plays a key role in teaching, research, and academic development. His professional journey reflects a strong dedication to both education and research, particularly in the areas of nanomaterials, thermal systems, and manufacturing processes. In addition to his teaching responsibilities, he actively supervises student projects and contributes to curriculum enhancement within his department. Sukarman has successfully integrated his research interests into his academic role, publishing multiple Scopus-indexed papers and leading several studies as the first or corresponding author. His hands-on experience in experimental mechanics, coupled with his academic background, allows him to bring real-world engineering challenges into the classroom. His involvement in conferences, journal publications, and applied research initiatives demonstrates a commitment to advancing mechanical engineering both in theory and practice. Sukarman’s professional experience showcases a balanced blend of academic leadership and technical expertise.

RESEARCH INTEREST

Sukarman’s research interests lie at the intersection of advanced materials and thermal-fluid sciences, with a particular focus on nanomaterials, nanofluids, and their applications in mechanical and energy systems. He is deeply engaged in exploring how nanomaterials can enhance the thermal conductivity and efficiency of industrial cooling systems, especially in processes like plastic injection molding and transformer cooling. His work also extends to manufacturing processes, including metal forming and resistance spot welding, where he investigates optimization techniques to improve mechanical performance and energy use. Sukarman is interested in experimental mechanics, applying hands-on testing methods to validate models and improve system designs. His research contributes to solving practical engineering challenges while also advancing theoretical understanding in heat transfer, energy efficiency, and sustainable materials. This blend of applied and experimental research underlines his commitment to innovation in mechanical engineering, making his work relevant to both academic and industrial advancements in energy and manufacturing technologies.

AWARD AND HONOR🏆

While specific awards and honors have not been listed, Sukarman’s growing body of peer-reviewed publications and his active role as a first or corresponding author in multiple Scopus-indexed journals reflect academic recognition and professional respect within his field. His selection as a lead author in research involving advanced nanofluids and mechanical systems optimization demonstrates the trust and acknowledgment he has earned from his academic peers and collaborators. Additionally, his ongoing Ph.D. studies and increasing involvement in high-impact research indicate a trajectory toward greater academic distinction. As a faculty member contributing significantly to research and education, he is well-positioned for future honors, such as best paper awards, research grants, or institutional recognitions. His commitment to high-quality research, innovation in mechanical engineering, and consistent scholarly output mark him as a strong candidate for future accolades, including the Best Researcher Award, as his contributions continue to grow in relevance and impact within the academic and engineering communities.

RESEARCH SKILL🔬

Sukarman possesses strong and diverse research skills that are well-aligned with the demands of modern mechanical engineering. His expertise spans experimental design, data analysis, materials characterization, and process optimization. He demonstrates a solid command of nanomaterials and nanofluids, particularly in enhancing thermal performance for industrial applications. His ability to design and conduct complex experiments—such as investigating heat transfer behavior in customized cooling systems or analyzing mechanical properties in metal forming—shows a high level of technical competence. Sukarman is skilled in using tools such as Taguchi Design of Experiments (DOE) for optimization and various analytical techniques for material and thermal analysis. His multiple first-author publications indicate proficiency in academic writing, literature review, and scientific communication. Furthermore, his collaborative work across projects reflects his ability to work within interdisciplinary teams. These research skills not only support his current projects but also equip him to contribute meaningfully to innovation and applied research in mechanical engineering.

CONCLUSION

Sukarman stands out as an emerging expert in nanomaterials and mechanical engineering research. His career merges academic instruction with experimental discovery, producing practical results that advance both theory and application. He consistently contributes to high-quality research, demonstrating a passion for developing sustainable technologies in energy and materials science. With strong publication credentials and an evolving academic profile, Sukarman is well-positioned to influence next-generation mechanical engineering practices. His pursuit of excellence in research and education ensures a lasting impact on both students and the broader engineering community.

PUBLICATIONS

Enhancing Thermal Conductivity of TiO₂-3%F⁺/MEG-40 Binary Nanofluid for Sustainable Cooling Systems in Plastic Injection Molding Applications

  • Authors: Sukarman, Budi Krisitiawan, Eko Prasetya Budiana, Khoirudin, Amri Abdulah

  • Journal: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

  • Year: 2025

Heat Transfer Characteristic of Al₂O₃ Nanofluid with Naphthenic Transformers Oil as Base Fluid

  • Authors: Khoirudin, Budi Kristiawan, Budi Santoso, Sukarman, Amri Abdulah

  • Journal: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

  • Year: 2025