Ghizlane Moutaoukil | Sustainable construction materials | Eco-friendly Construction Practices Award

Dr. Ghizlane Moutaoukil | Sustainable construction materials | Eco-friendly Construction Practices Award

Postdoctoral researcher | Centro de Física de Materiales (CFM) | Spain

Dr. Ghizlane Moutaoukil is a distinguished researcher in materials chemistry and environmental science, specializing in the synthesis, characterization, and thermomechanical evaluation of sustainable construction materials. With a PhD jointly earned from Mohammed V University in Rabat and the Institute of Materials Science of Madrid, the research focuses on the development of dense and porous geopolymers derived from industrial waste. Extensive investigations cover the optimization of mechanical and microstructural properties of fly ash-based geopolymers, thermomechanical behavior, foaming processes, and the integration of radiative cooling functions in cementitious composites. As a postdoctoral researcher at the Centro de Fisica de Materiales (CSIC/UPV-EHU), Moutaoukil continues advancing sustainable materials for environmental and energy applications. The impressive publication record in journals such as Materials Letters, Advanced Science, and Construction and Building Materials reflects deep expertise in MAS NMR, FTIR, XRD, and Raman spectroscopy. Patents and collaborative works, notably the “Modern Roman-Inspired Concrete with Daytime Radiative Cooling Capacity,” demonstrate innovative thinking bridging chemistry and civil engineering. Research also includes the mechanosynthesis of phosphate mine waste-based geopolymers and geochemical applications for pollution control. Proficiency in Arabic, French, English, and Spanish strengthens global collaboration capacity. Technical mastery extends to process engineering, corrosion studies, and rheological analysis, with strong computational and statistical design skills. Active participation in international conferences from Morocco to Spain and Turkey underscores commitment to interdisciplinary scientific exchange. Ghizlane Moutaoukil’s contributions—166 citations, 12 publications, and an h-index of 6—reflect consistent research excellence and growing global recognition, making Ghizlane Moutaoukil a promising leader in sustainable materials and environmental innovation.

Profile: Scopus | ORCID
Featured Publications:

Ghizlane Moutaoukil, Isabel Sobrados, & Jorge S. Dolado. (2025, October). Development of phosphate mine waste-based geopolymer by mechanosynthesis. Construction and Building Materials, 143573.

Jorge S. Dolado, Guido Goracci, Ghizlane Moutaoukil, Ridwan O. Agbaoye, Miguel Beruete, Alicia E. Torres‐García, Laura Carlosena, Achutha Prabhu, Jose A. Ibáñez, Nick Adams, et al. (2025, September 12). A modern Roman-inspired concrete with daytime radiative cooling capacity. Advanced Science.

Ghizlane Moutaoukil, Isabel Sobrados, H. Süleyman Gökçe, & Saliha Alehyen. (2025, June). Effect of thermal treatment, foaming and stabilizing agents on the synthesis of fly ash-based geopolymer foams using Raman spectroscopy and 29Si and 27Al MAS NMR. Sustainable Chemistry for the Environment, 100257.

Ghizlane Moutaoukil, Isabel Sobrados, Saliha Alehyen, & M’hamed Taibi. (2024, May 16). Monitoring the geopolymerization reaction of geopolymer foams using 29Si and 27Al MAS NMR. Minerals, 14(5), 516.

Ghizlane Moutaoukil, Isabel Sobrados, Saliha Alehyen, & M’hamed Taibi. (2024, March). Understanding the thermomechanical behavior of geopolymer foams: Influence of rate and type of foaming agent and stabilizer. Chemical Data Collections, 101111.

Ghizlane Moutaoukil, Saliha Alehyen, Isabel Sobrados, & Amine El Mahdi Safhi. (2023, June). Effects of elevated temperature and activation solution content on microstructural and mechanical properties of fly ash-based geopolymer. KSCE Journal of Civil Engineering.

Junsong Yang – Materials Science and Engineering – Best Researcher Award

Junsong Yang - Materials Science and Engineering - Best Researcher Award

Professor | Bengbu Medical University | China

Junsong Yang, affiliated with Bengbu Medical University in China, has established a solid research footprint with contributions that span advanced materials, nanotechnology, and photocatalysis. The profile records 22 publications that collectively garnered 66 citations, reflecting recognition from the scientific community and an h-index of 5, demonstrating both productivity and impact. The works highlight innovative approaches in material design, such as the preparation of Ti₃C₂/SA-TCPP composites through π–π interactions, which significantly improved hydrogen peroxide production and enabled efficient photocatalytic self-Fenton degradation of pollutants like 2,4-dichlorophenol, underscoring the environmental relevance of this research. Another notable study developed ratiometric FRET-encoded Zr-MOF@Au-FAM/TAMRA nanoassemblies integrated with tetrahedral framework nucleic acid-functionalized magnetic beads and DNA walkers, advancing ultrasensitive detection methods for antibiotics such as enrofloxacin and ciprofloxacin, indicating a strong interdisciplinary connection between chemistry, biotechnology, and environmental safety. The author’s research trajectory shows a consistent focus on combining functional nanomaterials with catalytic and sensing applications, addressing both energy conversion and pollution remediation challenges. Co-authorship with 55 collaborators reveals an extensive professional network, enhancing the interdisciplinary scope of the research. The publication record in high-impact journals, including Separation and Purification Technology and Chemical Engineering Journal, illustrates the quality and relevance of contributions in both applied and fundamental science. The consistent engagement with pressing global issues such as environmental pollution, sustainable chemical processes, and biomedical detection technologies positions the work as impactful and forward-looking. While awarded grants are not listed, the productivity and growing citation base suggest increasing recognition and potential for future funded projects. The scholarly activities demonstrate a balance between methodological innovation and practical application, making Junsong Yang’s contributions valuable for advancing modern chemical engineering and materials science, with clear implications for environmental sustainability, energy solutions, and public health monitoring.

Profile: Scopus 
Featured Publications:

Preparation of Ti3C2/SA-TCPP via π–π interaction for the enhanced production of H2O2 and the highly efficient photocatalytic-self-Fenton degradation of 2,4-dichlorophenol. (2025). Separation and Purification Technology.

Ratiometric FRET encoding Zr-MOF@Au-FAM/TAMRA nano assemblies based on tetrahedral framework nucleic acid-functionalized magnetic beads and DNA walker for ultrasensitive quantifying enrofloxacin and ciprofloxacin. (2025). Chemical Engineering Journal.

Yaxing Liu – Materials Science and Engineering – Best Researcher Award

Mr. Yaxing Liu - Materials Science and Engineering - Best Researcher Award

lecturer | Taiyuan University of Technology | China

Mr. Yaxing Liu has established strong expertise in the field of mechanical design and theory with a research focus on advanced rolling technology, material forming processes, and fatigue analysis of high-performance steels. His work investigates the mechanisms of strip edge defects, deformation behaviors in composite rolling, and fatigue performance under varying stress conditions, providing valuable insights for enhancing the precision, durability, and efficiency of manufacturing systems. He has contributed to the development of innovative control strategies for trimming processes and created accurate modeling approaches for predicting warping and deformation during steel and aluminum thin strip composite rolling. His research integrates both theoretical modeling and experimental validation to solve complex industrial challenges, ensuring significant improvements in quality control and defect prevention in metal forming industries. In addition to scholarly publications in high-impact journals, Liu’s contributions include patents addressing roll convexity adjustment mechanisms and compensation methods for roll diameter defects in rolling mills, showcasing his ability to translate fundamental research into practical engineering solutions. His continuous engagement in material behavior analysis under stress, defect mitigation techniques, and optimization of manufacturing processes reflects a clear trajectory toward advancing modern mechanical design and metallurgical engineering. With active collaboration across disciplines and consistent innovation in mechanical system optimization, his research strengthens both academic knowledge and industrial application. Yaxing Liu’s work demonstrates a balance of theoretical insight, experimental application, and practical implementation, marking him as a valuable contributor to the development of advanced rolling and forming technologies with wide relevance to the steel and aluminum industries. 155 Citations by 139 documents, 57 Documents, 7 h-index View.

Profile: Scopus
Featured Publications:
  1. Effect of multi‒directional forging on the evolution of intermetallic precipitates and mechanical properties in novel light refractory high-entropy alloys. (2025). Intermetallics.

  2. DDFNet: real-time salient object detection with dual-branch decoding fusion for steel plate surface defects. (2025). Journal of Iron and Steel Research International.

  3. Study on influence and mechanism of steel / aluminum composite thin strips preparation process on interfacial bonding strength. (2025). Suxing Gongcheng Xuebao Journal of Plasticity Engineering.

  4. Research on unbonded defect imaging method of corrugated clad plate based on laser ultrasonics. (2025). Measurement Journal of the International Measurement Confederation.

  5. Effect of two-pass rolling of textured roll and polished roll on surface topography and mechanical properties of 316L stainless steel ultra-thin strip. (2025). Journal of Iron and Steel Research International.

Dr. Yuhai Dou – Materials Chemistry – Best Researcher Award

Dr. Yuhai Dou - Materials Chemistry - Best Researcher Award

University of Shanghai for Science and Technology - China

AUTHOR PROFILR

GOOGLE SCHOLAR

🧬 SUMMARY

Dr. Yuhai Dou is a trailblazing materials scientist specializing in atomically thin nanomaterials for energy conversion and storage. With a Ph.D. from the University of Wollongong and extensive research experience across China and Australia, he has pioneered several high-impact studies in electrocatalysis, water splitting, and rechargeable batteries. Dr. Dou is a Professor at the University of Shanghai for Science and Technology and has served in roles such as ARC DECRA Fellow and Research Fellow at Griffith University. He boasts a publication record of over 90 papers in top-tier journals with an H-index of 45, over 7500 citations, and coverage in leading science media outlets. His innovations have been recognized through multiple awards, fellowships, and funded projects totaling millions in CNY and AUD. He continues to contribute significantly to next-generation energy materials research and global scientific collaboration.

📘 EARLY ACADEMIC PURSUITS

Dr. Yuhai Dou began his academic journey in materials science at Central South University, where he earned both his bachelor's and master's degrees with a focus on powder metallurgy. During his early career, he displayed an aptitude for applied research, developing high-silicon aluminum alloys and oxide dispersion-strengthened steels. His passion for advanced materials led him to pursue doctoral studies at the University of Wollongong under the guidance of esteemed mentors like Prof. Shi Xue Dou and A/Prof. Ziqi Sun. His Ph.D. focused on atomically thin nanomaterials for lithium/sodium-ion batteries and catalytic oxygen evolution reactions. A notable milestone during his doctoral years included a visiting research stint at Beihang University, where he explored superwetting materials for oil spill collection. These formative years equipped Dr. Dou with a solid foundation in nanomaterials, electrochemistry, and sustainable energy technologies, which continue to shape his scientific pursuits today.

🏛️ PROFESSIONAL ENDEAVORS

Dr. Dou's professional journey reflects a dynamic blend of academic excellence and international exposure. He began as an Associate Research Fellow at the University of Wollongong, advancing to Research Fellow and DECRA Fellow at Griffith University, where he explored single-atom catalysts and vacancy engineering. Returning to China, he held professorships at the Shandong Institute of Advanced Technology and currently serves as Professor at the University of Shanghai for Science and Technology. Across these roles, he has led cutting-edge research on atomically thin materials for electrocatalysis and clean energy. Dr. Dou has also been actively involved in mentoring young researchers, chairing academic sessions, and contributing to major international conferences. His strong academic leadership and commitment to translational research have positioned him as a key figure in the global materials science community, driving innovation in sustainable energy technologies.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

At the core of Dr. Dou’s research is the rational design and manipulation of atomically thin nanomaterials to enhance energy conversion and storage systems. He has made significant breakthroughs in water splitting, H2O2 production, oxygen evolution reaction (OER), and the development of next-generation Li/Na-ion batteries. His research integrates defect engineering, cation-vacancy tuning, and single-atom catalyst design, setting new performance benchmarks in electrocatalysis. Dr. Dou's interdisciplinary approach blends computational modeling and experimental methods, supported by prestigious grants from the ARC and Chinese funding agencies. His highly cited reviews and original articles, including in Chemical Reviews and Nature Communications, have influenced academic and industrial strategies toward green energy. Through collaborations and keynotes, he promotes global dialogue in materials research. His work not only addresses energy sustainability but also contributes to the foundational understanding of two-dimensional material science.

🏆 ACCOLADES AND RECOGNITION

Dr. Dou's outstanding research achievements have earned him numerous national and international honors. He is a recipient of the ARC DECRA award, IAAM Medal Nomination, and the China Top Cited Paper Award. His excellence in innovation was recognized with the Military Medal by the Shanghai Government and the “5150” Talent Plan of Jinan. Additional accolades include the Distinguished Expert of Jinan, Taishan Scholar title, and several early-career research grants from Griffith University. His academic leadership is reflected in invitations as keynote speaker, session chair, and panelist at global conferences. With awards from prestigious institutions and governments, Dr. Dou has been consistently identified as an emerging leader in energy materials research. These recognitions underscore his ability to bridge academic inquiry with real-world applications, affirming his role as a global influencer in sustainable energy solutions.

🌍 IMPACT AND INFLUENCE

Dr. Yuhai Dou's influence extends beyond publications and patents—his work impacts global energy policy and industrial innovation. His studies on efficient water-splitting catalysts and next-generation batteries offer promising solutions to energy challenges. Several of his papers are highly cited, appearing in journals with impact factors exceeding 70, and are frequently spotlighted by science media worldwide. He has played a significant role in guiding early-career scientists through mentorship and collaboration. His participation in international consortia, such as ARC Discovery and Vehicle Auto CRC, reflects his strategic integration of academic insight into industry-relevant projects. Dr. Dou’s research has shaped contemporary understanding of low-dimensional materials and continues to inform best practices in nanomaterials engineering for energy applications. As a thought leader, his global reach and interdisciplinary approach advance the transition toward a more sustainable and energy-efficient future.

🚀 LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Dr. Dou is poised to expand the boundaries of nanomaterials science through high-risk, high-reward research. With over 26 million CNY in research grants under his leadership, he plans to deepen exploration into defect-modulated 2D materials and scalable electrocatalysts for hydrogen generation. His vision includes fostering cross-disciplinary research that merges artificial intelligence, advanced spectroscopy, and materials informatics. As a mentor and collaborator, he aims to build a global network for innovation in energy storage technologies. His ongoing contributions will likely redefine efficiency standards in catalysis and battery technologies. Dr. Dou’s long-term impact lies in his ability to inspire scientific curiosity, train future leaders, and engineer practical solutions for global sustainability. His legacy is one of scientific rigor, visionary leadership, and unwavering commitment to advancing clean energy science for societal good.

PUBLICATION

Title: Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets
Authors: Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.S. Park, L. Jiang, J.H. Kim, S.X. Dou
Journal: Nature Communications, 5 (1), 3813 (2014)

Title: Coexisting single‐atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst
Authors: Z. Zhu, H. Yin, Y. Wang, C.H. Chuang, L. Xing, M. Dong, Y.R. Lu, ...
Journal: Advanced Materials, 32 (42), 2004670 (2020)

Title: Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)‐ion batteries
Authors: J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou
Journal: Advanced Science, 4 (10), 1700146 (2017)

Title: 2D Frameworks of C2N and C3N as New Anode Materials for Lithium‐Ion Batteries
Authors: J. Xu, J. Mahmood, Y. Dou, S. Dou, F. Li, L. Dai, J.B. Baek
Journal: Advanced Materials, 29 (34), 1702007 (2017)

Title: Atomic Layer‐by‐Layer Co₃O₄/Graphene Composite for High Performance Lithium‐Ion Batteries
Authors: Y. Dou, J. Xu, B. Ruan, Q. Liu, Y. Pan, Z. Sun, S.X. Dou
Journal: Advanced Energy Materials, 6 (8), 1501835 (2016)

Title: A yolk–shell structured silicon anode with superior conductivity and high tap density for full lithium‐ion batteries
Authors: L. Zhang, C. Wang, Y. Dou, N. Cheng, D. Cui, Y. Du, P. Liu, M. Al‐Mamun, ...
Journal: Angewandte Chemie International Edition, 58 (26), 8824–8828 (2019)

Zoma Fati – Materials Science and Engineering – Best Researcher Award

Zoma Fati - Materials Science and Engineering - Best Researcher Award

Yembila Abdoulaye TOGUYENI University - Burkina Faso

AUTHOR PROFILE

ORCID

RESEARCH BACKGROUND

Zoma Fati has consistently contributed to civil engineering through a multidisciplinary approach combining physics and sustainable material science. His work focuses on local construction techniques and energy-efficient materials, aligning with environmental and thermal regulation goals. At the Université Yembila Abdoulaye TOGUYENI, he has played a leadership role in fostering engineering education and research, especially in material formulation using geo- and bio-sourced components. His efforts have expanded the understanding of thermally adaptive structures like Nubian vaults, emphasizing cost-effectiveness, ecological sustainability, and performance in extreme climates.

INNOVATIVE MATERIAL DEVELOPMENT

Zoma Fati’s research has led to the development of environmentally friendly materials tailored to local contexts. He has proposed scientifically validated criteria for selecting soil suitable for energy-efficient construction. His work also extends into plastic waste-based concrete innovations, targeting civil applications such as roads, sewage systems, and low-cost buildings. These innovations aim to reduce carbon footprints while leveraging abundant local and recycled resources. Though some findings await publication, his progressive direction reflects a commitment to both technical advancement and ecological responsibility, particularly in under-resourced regions.

SCIENTIFIC CONTRIBUTIONS

Zoma Fati has authored 12 journal articles indexed in SCI and Scopus, reflecting the academic rigor and relevance of his contributions. His presence on platforms like ResearchGate, with an h-index of 4, shows active engagement with the scientific community. He holds editorial appointments and regularly participates in peer collaborations, enabling cross-disciplinary knowledge exchange. He has contributed to technical development in Burkina Faso and broader regions by aligning scientific pursuits with local socioeconomic needs, offering practical applications in construction technology and energy conservation strategies.

COLLABORATION AND LEADERSHIP

An influential figure beyond academia, Zoma Fati serves as a board member at ANEREE and holds key roles in organizations such as ABAPEE and SBSIA. These positions enhance his ability to shape policy and professional practices related to energy efficiency and engineering. His leadership at the Université Yembila Abdoulaye TOGUYENI as Dean and previously Assistant Dean exemplifies his administrative capability and strategic vision. Through these roles, he has built frameworks for sustainable research initiatives and fostered interdisciplinary cooperation among scholars, engineers, and policy-makers.

PUBLICATION

Assessment of the embodied energy and carbon footprint of vibration-compacted adobe brick

Authors: Fati Zoma, Noufou Zongo, Etienne Malbila, David Yemboini Kader Toguyeni

Journal: Journal of Building Engineering

Tengyang Zhu – Materials Science and Engineering – Best Researcher Award

Tengyang Zhu - Materials Science and Engineering - Best Researcher Award

Shandong University - China

AUTHOR PROFILE

SCOPUS

ORCID

SUMMARY

TENGYANG ZHU is a dedicated researcher specializing in membrane separation technologies, with extensive expertise spanning gas, liquid, and ion separations. He has authored over 20 peer-reviewed SCI papers in top-tier journals and has taken a leading role in two competitive research projects. With a strong foundation in materials and chemical engineering, he brings innovation to the design and synthesis of high-performance membranes. His research is not only academically impactful but also addresses critical environmental and industrial challenges, particularly in carbon capture and bioethanol purification.

EDUCATION

Dr. Tengyang Zhu obtained his Ph.D. from the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology in 2022. He earned his Master’s degree from Taiyuan University of Technology in Materials Science and Engineering, and his Bachelor’s degree from Liaocheng University. This academic journey solidified his foundation in materials science, enabling him to pursue complex interdisciplinary research in polymer membranes and advanced separation technologies critical to sustainable energy and environmental solutions.

PROFESSIONAL EXPERIENCE

Dr. Zhu has accumulated significant research experience from his graduate studies to postdoctoral work, focusing on advanced membrane separation. He has led and contributed to several national and provincial research projects. Currently, he is actively involved in developing novel polymer membrane materials for carbon capture and selective ion separation. He has also been entrusted with independent project leadership, managing research funding, collaborating across institutions, and mentoring students and junior researchers in the laboratory.

RESEARCH INTEREST

His core research interests lie in membrane-based separation processes, including gas separation, pervaporation, and ion selectivity. He focuses on the development of high-efficiency polymer and composite membranes with tailored structures and functionalities. Dr. Zhu is particularly invested in green and scalable fabrication techniques, the understanding of transport mechanisms, and applications in energy-efficient purification and environmental remediation, such as ethanol dehydration and CO₂ capture.

AWARD AND HONOR

Dr. Zhu has secured prestigious research grants, including the Shandong Postdoctoral Science Foundation and the Natural Science Foundation of Shandong Province. These competitive awards recognize his potential and innovation in membrane research. Additionally, his multiple publications in high-impact journals and the filing of national patents highlight the academic and technological value of his contributions to chemical engineering and material sciences.

RESEARCH SKILL

Dr. Zhu is proficient in synthesizing and characterizing membrane materials using a wide array of techniques including SEM, TEM, and XRD. He demonstrates deep expertise in designing membranes with multifunctional properties and in exploring their separation mechanisms. His skillset covers polymer engineering, nanomaterials integration, and thin-film composite fabrication, positioning him as a capable researcher adept in both theoretical understanding and practical applications of separation technology.

PUBLICATIONS

Title: Coordination-enhanced ionic elastomers: Durable, self-healing, and multimodal sensors for wearable electronics and robotics
Authors: QingMing Kong, Yu Tan, Haiyang Zhang, Tengyang Zhu, Xu Wang
Journal: Chemical Engineering Journal

Title: High‐Performance and Scalable Organosilicon Membranes for Energy‐Efficient Alcohol Purification
Authors: Tengyang Zhu, Dongchen Shen, Jiayu Dong, Huan Liu, Qing Xia, Song Li, Lu Shao, Yan Wang
Journal: Advanced Functional Materials

Title: Mimosa‐Inspired Body Temperature‐Responsive Shape Memory Polymer Networks: High Energy Densities and Multi‐Recyclability
Authors: Qingming Kong, Yu Tan, Haiyang Zhang, Tengyang Zhu, Yitan Li, Yongzheng Xing, Xu Wang
Journal: Advanced Science

Title: Healable, Recyclable, and Upcyclable Gel Membranes for Efficient Carbon Dioxide Separation
Authors: Jing Xiao, Tengyang Zhu, Haiyang Zhang, Wei Xie, Renhao Dong, Yitan Li, Xu Wang
Journal: Angewandte Chemie International Edition

Title: Controllable Hydrogen-bonded Poly(dimethylsiloxane) (PDMS) Membranes for Ultrafast Alcohol Recovery
Authors: Tengyang Zhu, Jiayu Dong, Huan Liu, Yan Wang
Journal: Materials Horizons

Title: TFC membrane with in-situ crosslinked ultrathin chitosan layer for efficient water/ethanol separation enabled by multiple supramolecular interactions
Authors: Qing Xia, Tengyang Zhu, Zhengze Chai, Yan Wang
Journal: Advanced Membranes

CONCLUSION

Tengyang Zhu’s academic rigor, publication record, and leadership in innovative research projects make him a standout contributor in the field of membrane technology. His work bridges fundamental science and industrial application, advancing cleaner energy and environmental sustainability. With his ongoing projects and international publications, he is poised to make long-term contributions to the development of high-performance separation materials and systems.

Linnan Bi – Materials Science and Engineering – Best Researcher Award

Linnan Bi - Materials Science and Engineering - Best Researcher Award

University of Electronic Science and Technology of China - China

AUTHOR PROFILE

GOOGLE SCHOLER

⚡ RESEARCH THEMES AND SCIENTIFIC

Dr. Linnan Bi’s research themes include solid-state batteries, composite electrode design, high-conductivity solid electrolytes, ionic transport mechanisms, and nanoporous material systems. His mission is to redefine the structural landscape of energy storage materials through nanoscale engineering, aiming to overcome the limitations of traditional liquid-based systems. With a strong foundation in both theoretical and experimental techniques, he continues to investigate the core challenges in battery technology—safety, longevity, and efficiency. Through persistent scientific inquiry and innovation, he contributes to advancing the global pursuit of sustainable and reliable energy solutions.

🎓 EARLY ACADEMIC PURSUITS

Dr. Linnan Bi began his academic journey with a strong foundation in Materials Science and Engineering at the University of Electronic Science and Technology of China (UESTC). His early academic training was distinguished by a focus on nanomaterials, electrochemistry, and energy storage systems. By the time he completed his Ph.D. in 2024, he had already developed a keen interest in the structural modification of carbon-based materials and their application in advanced battery systems. His graduate research emphasized the integration of theoretical design with practical experimentation, particularly in the realm of lithium and sodium ion batteries. This balance between theory and hands-on experimentation enabled him to build a robust understanding of energy conversion and storage, which has defined the trajectory of his postdoctoral pursuits. His academic excellence was reflected in the rapid progression to postdoctoral research within a top-tier national research facility.

🧑‍🏫 PROFESSIONAL ENDEAVORS

Currently a postdoctoral fellow at the University of Electronic Science and Technology of China, Dr. Bi actively engages in innovative materials research with a strong focus on energy applications. His work encompasses both academic and applied projects, including advanced solid-state electrolyte development and the design of nanoporous carbon structures. He is a critical member of several institutional collaborations with leading Chinese and international universities. His professional activities include overseeing experimental designs, mentoring younger researchers, and publishing high-impact articles. With an eye toward practical innovation, Dr. Bi bridges the gap between laboratory research and industrial implementation. His roles are not only limited to scientific development but also extend into intellectual property, evidenced by his numerous patents in the battery technology sector. These initiatives have reinforced his status as a multifaceted scientist contributing to China’s clean energy and advanced materials sectors.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Bi’s research focuses on the structural optimization of solid-state electrolytes, nanoporous carbons, and advanced electrode materials for lithium and sodium ion batteries. His work explores how electrochemical interfaces evolve during charge-discharge cycles and seeks to improve conductivity and structural compatibility in solid-state battery systems. A notable dimension of his research is the development of heterojunction interfaces and reinforcement frameworks to enhance electrochemical performance and durability. His methodical approach combines simulation modeling with rigorous experimentation, allowing for comprehensive material characterization and performance validation. His published research, totaling 22 peer-reviewed articles, includes key findings in halide electrolyte performance, covalent organic frameworks in lithium-sulfur systems, and solid polymer electrolytes. His growing patent portfolio further underscores his inventive contributions to sustainable energy storage technologies.

🏅 ACCOLADES AND RECOGNITION

Dr. Linnan Bi has been recognized for both his academic innovation and impactful publications. He was honored in Wiley China’s “Excellent Author Program” for scientific innovation during April–June 2024, a reflection of his contributions to advancing material science in energy sectors. He also received the 5th Xinwei Academic Paper Award and the Xinwei Popularity Award for his high-quality research outputs. These accolades affirm his scientific standing within the Chinese research community and his growing influence internationally. His citation index currently exceeds 420, reflecting significant engagement and acknowledgment from the global scientific community. His patent filings and peer-reviewed articles reflect a mature body of work that balances fundamental science with technological relevance.

🌍 IMPACT AND INFLUENCE

Dr. Bi’s research holds direct relevance to global efforts toward cleaner energy and efficient power storage. By enhancing solid-state battery technology, his work supports the global transition away from fossil fuels and toward sustainable energy systems. His insights into electrolyte-material compatibility and electrode surface engineering are crucial to the development of next-generation batteries for electric vehicles and grid storage. Furthermore, his collaborative work with institutions like Shaanxi University of Science and Technology and Wenzhou University has allowed for wider dissemination and application of his findings. His technical expertise contributes not only to academic discourse but also to industrial product development, making him a key player in China’s evolving energy landscape.

🔮 LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Dr. Bi aims to lead pioneering research in high-energy-density and long-life solid-state batteries. He plans to expand on the mechanistic understanding of electrochemical degradation and develop smart, adaptive electrolytes that can self-heal and maintain ionic conductivity over extended lifecycles. His ambition is to build scalable material systems for commercial energy storage devices while maintaining a commitment to environmentally friendly synthesis processes. He envisions greater integration of AI-based modeling and material informatics into battery research. By nurturing interdisciplinary collaborations, publishing transformative research, and contributing to IP development, Dr. Bi seeks to leave a legacy defined by practical breakthroughs and sustainable innovation in material science.

NOTABLE PUBLICATIONS

Title: CoS₂ embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries
Authors: X. He, L. Bi, Y. Li, C. Xu, D. Lin
Journal: Electrochimica Acta 332, 135453 (2020)

Title: High energy storage density and discharging efficiency in La³⁺/Nb⁵⁺-co-substituted (Bi₀.₅Na₀.₅)₀.₉₄Ba₀.₀₆TiO₃ ceramics
Authors: Y. Yang, H. Wang, L. Bi, Q. Zheng, G. Fan, W. Jie, D. Lin
Journal: Journal of the European Ceramic Society 39 (10), 3051–3056 (2019)

Title: Enhanced Cycling Stability and Rate Capability in a La-Doped Na₃V₂(PO₄)₃/C Cathode for High-Performance Sodium Ion Batteries
Authors: L. Bi, X. Li, X. Liu, Q. Zheng, D. Lin
Journal: ACS Sustainable Chemistry & Engineering 7 (8), 7693–7699 (2019)

Title: Improving electrochemical performance of Na₃(VPO₄)₂O₂F cathode materials for sodium ion batteries by constructing conductive scaffold
Authors: L. Bi, Z. Miao, X. Li, Z. Song, Q. Zheng, D. Lin
Journal: Electrochimica Acta 337, 135816 (2020)

Title: Insight into accelerating polysulfides redox kinetics by BN@MXene heterostructure for Li–S batteries
Authors: Y. Song, P. Tang, Y. Wang, L. Bi, Q. Liang, Y. Yao, Y. Qiu, L. He, Q. Xie, P. Dong, et al.
Journal: Small 19 (38), 2302386 (2023)

Weiwei Zhang – Materials Science and Engineering – Best Researcher Award

Weiwei Zhang - Materials Science and Engineering - Best Researcher Award

Heze University - China

AUTHOR PROFILE

SCOPUS

🧪 RESEARCH THEMES

Dr. Weiwei Zhang’s core research themes include nanocomposite flame retardancy, interpenetrating polymer networks, polysilsesquioxane-based reinforcement systems, and smart polymer design. Her mission is to create safer, smarter, and more sustainable materials through the innovative integration of polymer science, thermal chemistry, and structural engineering. With a passion for both scientific discovery and practical application, her work seeks to enhance safety performance across industries while promoting greener chemical practices. Dr. Zhang continues to push the boundaries of material science to meet the challenges of the modern world.

🎓 EARLY ACADEMIC PURSUITS

Dr. Weiwei Zhang’s academic journey began with a strong foundation in chemical engineering at Qingdao University, where she completed both her bachelor’s and master’s degrees. She further advanced her expertise by earning a Ph.D. in Materials Science from the Beijing Institute of Technology. Throughout her studies, she consistently ranked among the top students, earning prestigious honors such as Outstanding Doctoral Graduate and the Outstanding Dissertation Award. Her early research included fundamental studies on polysaccharide fibers and advanced flame-retardant composites, which set the stage for her deeper investigations into functional polymers and nanocomposites. These experiences not only shaped her scientific outlook but also sparked a long-term passion for addressing material challenges in safety and sustainability through innovative research in flame-retardant systems and structural materials.

🧑‍🏫 PROFESSIONAL ENDEAVORS

Since January 2022, Dr. Zhang has served as an Associate Professor at the School of Chemistry and Chemical Engineering, Heze University. Her appointment came through the university’s prestigious “Outstanding Doctoral Talent Introduction Program,” which recognizes exceptional young researchers. In this role, she has been instrumental in fostering advanced research programs while mentoring students in polymer and composite material sciences. She balances teaching with research leadership, having secured internal and provincial grants. Her integration into the university has helped establish a robust research environment in material engineering and nanotechnology. Dr. Zhang has also contributed to cross-disciplinary collaborations within the institution, further advancing the university’s profile in applied materials research and sustainable chemical engineering practices.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Zhang's research is centered on functional polymer materials, high-performance composites, and flame-retardant systems. She has explored advanced synthesis methods for silsesquioxane-based nanomaterials and their applications in vinyl ester and epoxy resin systems. Her work integrates experimental investigations with molecular dynamic simulations to uncover structure-property relationships, particularly focusing on mechanical reinforcement, thermal stability, and fire resistance. Her studies on interpenetrating polymer networks, polyhedral oligomeric silsesquioxanes (POSS), and biodegradable fiber spinning techniques provide practical solutions for industries that require materials with superior flame retardancy and durability. These contributions are particularly relevant in the context of safer construction materials, aerospace composites, and sustainable product design.

🏅 ACCOLADES AND RECOGNITION

Dr. Zhang has been consistently recognized for her scientific excellence. During her Ph.D., she was awarded the Outstanding Doctoral Graduate and received multiple first-class scholarships in acknowledgment of her academic and research performance. Her papers have been published in high-impact journals such as Composites Part A & B, Polymer Degradation and Stability, and Journal of Materials Science. Her publication record showcases her dedication to both scientific rigor and real-world application. In recognition of her growing expertise, she has been granted research funding from the Shandong Provincial Natural Science Foundation, highlighting her emerging leadership in flame-retardant material innovation and her ability to compete at both institutional and provincial levels.

🌍 IMPACT AND INFLUENCE

Through her extensive research on flame-retardant nanocomposites, Dr. Zhang is contributing to safer, more sustainable material technologies. Her work on PMPOSS-modified polymers and POSS-reinforced composites has potential applications in transportation, electronics, and construction sectors that demand high-performance and flame-resistant materials. Her findings on transparency, mechanical integrity, and low-smoke emission properties influence both industrial manufacturing processes and safety standards. She continues to collaborate with leading materials scientists across China, further integrating her research into national material innovation strategies. As a teacher and mentor, she is also shaping future chemists and engineers, extending her influence beyond the lab and into future generations of researchers.

🔮 LEGACY AND FUTURE CONTRIBUTIONS

Dr. Zhang aims to establish herself as a leading voice in flame-retardant and multifunctional material development. Her vision includes the integration of eco-friendly flame retardants, biodegradable polymer systems, and advanced fabrication techniques that reduce carbon footprint. In the future, she intends to pursue further interdisciplinary collaborations—merging polymer chemistry with environmental engineering and nanoscience. By expanding on the mechanisms behind flame suppression and thermal resistance, she hopes to contribute foundational knowledge that can be applied to a broad array of safety-critical industries. Through teaching, publishing, and research leadership, she is building a legacy rooted in material innovation and academic excellence.

NOTABLE PUBLICATIONS

Facile synthesis of polyhedral oligomeric silsesquioxanes with excellent thermosetting, fibrous and crystalline properties

Authors: W. Zhang (Weiwei), Y. Niu (Yukuan), W. Zhang (Wenchao), R. Yang (Rongjie)
Journal: European Polymer Journal, 2024

Analysis on the caged structure of polyhedral oligomeric dodecaphenyl silsesquioxane and its condensation mechanism

Authors: D. Zhang (Donglin), H. Zhou (Hailian), R. Yang (Rongjie), W. Zhang (Weiwei), L. Li (Lamei)
Journal: Journal of Molecular Structure, 2023