Dr. Majdi Benamara | Environmental Engineering | Breakthrough Research Award
Postdoc | University of Minho | Portugal
Dr. Majdi Benamara is a dedicated researcher in physics whose work spans advanced functional materials, nanostructured oxides, and energy‐related applications. With a publication record of 22 peer-reviewed articles, his contributions demonstrate strong expertise in semiconductor metal oxides, ferroelectric thin films, photocatalysts, and gas-sensing materials. His research consistently integrates experimental synthesis, structural and electrical characterization, and application-driven performance evaluation. Over the years, he has collaborated with multidisciplinary teams across Switzerland, Portugal, Belgium, Spain, and Tunisia, contributing to internationally relevant projects focused on sustainable materials and next-generation electronic devices. His recent appointment as a researcher at EMPA – Swiss Federal Laboratories for Materials Science and Technology reflects his growing impact in advanced materials engineering, particularly in building energy materials and hybrid oxide systems. Previous research experience at the University of Minho involved ferroelectricity in binary oxide thin films for high-performance capacitors, further solidifying his expertise in electronic materials and thin-film technologies. Earlier roles and internships at Materia Nova (Belgium), the University of Aveiro (Portugal), and the University of Sevilla (Spain) contributed to his strong technical foundation in sol–gel chemistry, supercritical drying, spark plasma sintering, pulsed laser deposition, and ion-beam sputtering. Dr. Benamara’s work has generated advances in gas sensors for environmental monitoring, visible-light photocatalysts for pollutant degradation, and doped oxide systems for electronic and dielectric applications. His collaborations with leading researchers and laboratories have strengthened his scientific visibility and enabled the development of innovative materials addressing global challenges in air quality, environmental remediation, and sustainable energy technologies. Through his consistent scholarly output and broad experimental capabilities, he continues to contribute significantly to the progress of materials science and applied physics on an international scale.
Profile: Google Scholar
Publications
1. Bembibre, A., Benamara, M., Hjiri, M., Gómez, E., Alamri, H. R., Dhahri, R., & others. (2022). Visible-light driven sonophotocatalytic removal of tetracycline using Ca-doped ZnO nanoparticles. Chemical Engineering Journal, 427, 132006.
2. Jaballah, S., Benamara, M., Dahman, H., Ly, A., Lahem, D., Debliquy, M., & El Mir, L. (2020). Effect of Mg-doping ZnO nanoparticles on detection of low ethanol concentrations. Materials Chemistry and Physics, 255, 123643.
3. Jaballah, S., Benamara, M., Dahman, H., Lahem, D., Debliquy, M., & El Mir, L. (2020). Formaldehyde sensing characteristics of calcium-doped zinc oxide nanoparticles-based gas sensor. Journal of Materials Science: Materials in Electronics, 31(11), 8230–8239.
4. Benamara, M., Gómez, E., Dhahri, R., & Serrà, A. (2021). Enhanced photocatalytic removal of cyanotoxins by Al-doped ZnO nanoparticles with visible-LED irradiation. Toxins, 13(1), 66.
5. Benamara, M., Massoudi, J., Dahman, H., Dhahri, E., El Mir, L., Ly, A., & others. (2020). High response to sub-ppm level of NO₂ with 50% RH of ZnO sensor obtained by an auto-combustion method. Journal of Materials Science: Materials in Electronics, 31(17), 14249–14260.