Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assist. Prof. Dr Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assistant Professor, Concordia University, Canada

Dr. Hang Xu is an Assistant Professor in the Department of Mechanical, Industrial, and Aerospace Engineering at Concordia University, Montreal, Canada. With a Ph.D. in Mechanical Engineering from McGill University and an MSc in Aircraft Design from Beijing University of Aeronautics and Astronautics, Dr. Xu specializes in mechanical metamaterials, smart structures, and additive manufacturing. His research focuses on developing advanced materials with programmable morphing and motion for aerospace, medical, and robotic applications. Prior to joining Concordia, he held research positions at Imperial College London and Siemens, contributing to innovations in multi-stable structures, soft robotics, and medical devices. Dr. Xu is recognized for his teaching excellence and has received awards for his contributions to research during the COVID-19 pandemic.

Professional Profile

Orcid

Scopus

Education 🎓

  • Doctorate in Mechanical Engineering, McGill University (2013–2018)
    Supervisor: Damiano Pasini
  • Master’s Thesis in Aircraft Design, Beijing University of Aeronautics and Astronautics (2011–2013)
    Supervisor: Yuanming Xu
  • Bachelor’s in Aircraft Design and Engineering, Shenyang Aerospace University (2007–2011)
    Supervisor: Weiping Zhang

Experience 💼

  • Assistant Professor, Concordia University (2022–Present)
    Research on functional/smart metamaterials for aerospace, nautical, and medical applications.
  • Research Associate, Imperial College London (2020–2022)
    Developed multi-stable structures, soft robots, and medical devices.
  • Postdoctoral Researcher, McGill University (2018–2020)
    Worked on thermally actuated deployable mechanisms and additive manufacturing processes.
  • Internships: Chinese Aircraft Design Institute of Aviation Medicine (2012–2013) and Shenyang Aircraft Design Institute (2010–2011).

Awards and Honors 🏆

  • Teaching Excellence Award, Concordia University (2023)
  • Associate Fellowship of the Higher Education Academy (AFHEA), UK (2022)
  • Excellent Contribution to Research in COVID-19 Pandemic, Imperial College London (2021)
  • Winner of 3D-Printing Workshop Design Challenge, McGill University (2019)

Research Focus 🔬

Dr. Xu’s research focuses on mechanical metamaterialssmart materials and structures, and additive manufacturing. His work aims to develop materials with programmable morphing and motion for applications in aerospace structuressoft roboticsmedical devices, and composite materials. Key areas include multiscale mechanics, finite element analysis, and the design of multi-stable structures for innovative functionalities.

Publication Top Notes 📚

  1. Embedded pressure sensing metamaterials using TPU-graphene composites and additive manufacturing
  2. Generalized tessellations of superellipitcal voids in low porosity architected materials for stress mitigation
  3. Thermally actuated hierarchical lattices with large linear and rotational expansion
  4. Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  5. ABAQUS user subroutine UMAT for elastoplastic nonlinear kinematic hardening material (Mróz model) with anisotropic plasticity
  6. Digitally Programmable Architected Materials with Static and Dynamic Reconfiguration
  7. Multi-stable meta-materials with programmable reconfigurations for soft robots
  8. 3D printed soft metamaterial force sensors for gait monitoring using TPU-graphene composites
  9. Overcoming the strength-modulus tradeoff using double network metamaterial lattices
  10. Multi-stable architectured materials with high-mobility morphing

Conclusion 🌟

Dr. Hang Xu is a leading researcher in mechanical metamaterials and smart structures, with a strong focus on innovative applications in aerospace, robotics, and medical devices. His contributions to teaching, research, and industry collaborations highlight his commitment to advancing materials science and engineering. Through his work, Dr. Xu continues to push the boundaries of programmable materials, paving the way for future technological advancements. 🚀

 

Shamshad Alam | Geotechnical Materials | Excellence in Research

Dr Shamshad Alam | Geotechnical Materials | Excellence in Research

Assistant Professor, Jazan University, Saudi Arabia

Shamshad Alam is a prominent researcher in civil engineering based at Jazan University, Saudi Arabia. With a solid academic background and extensive experience in geotechnical engineering, his work has significantly contributed to the understanding of sustainable construction practices. Alam has authored numerous papers focused on innovative materials and methods in civil engineering, demonstrating his commitment to advancing the field. His interdisciplinary approach integrates environmental sustainability with practical engineering solutions, making him a respected figure in both academic and professional circles.

Profile

Scopus

Strengths for the Award

Dr. Shamshad Alam has demonstrated exceptional expertise and innovation in geotechnical engineering, particularly in sustainable construction materials and practices. With 499 citations across 15 published documents, Dr. Alam’s impactful research addresses critical issues such as the utilization of waste materials in concrete production, landslide susceptibility assessments, and advanced modeling techniques in geotechnics. His strong h-index of 7 reflects consistent quality and influence in his work, making him a leading figure in the field.

Areas for Improvement

While Dr. Alam has a robust publication record, expanding his research collaborations and increasing the visibility of his work through international conferences could enhance his global presence. Additionally, pursuing interdisciplinary projects may open new avenues for innovative solutions in geotechnical engineering, particularly in addressing environmental challenges.

Education

Shamshad Alam holds a Ph.D. in Civil Engineering, specializing in geotechnical engineering and sustainable materials. He completed his undergraduate and master’s degrees in civil engineering, where he developed a strong foundation in engineering principles and practices. His educational journey is marked by a dedication to research and innovation, leading to his involvement in various projects aimed at improving construction techniques and material efficiency. Alam’s academic achievements have earned him recognition in the engineering community, fostering collaborations with institutions and industry professionals worldwide.

Experience

With over a decade of experience in civil engineering, Shamshad Alam has worked on various projects focusing on soil mechanics, construction materials, and environmental sustainability. His professional journey includes roles as a researcher, consultant, and educator, where he has guided students and professionals in advanced engineering concepts. Alam has collaborated with national and international researchers, contributing to significant studies on materials recycling and innovative construction methods. His hands-on experience in the field complements his academic research, allowing him to address real-world engineering challenges effectively.

Awards and Honors

Shamshad Alam has received multiple awards for his contributions to civil engineering and environmental sustainability. Notably, he has been recognized for his innovative research on sustainable construction materials, earning accolades from academic institutions and professional organizations. His papers have garnered significant citations, reflecting his impact in the field. Alam’s commitment to excellence has also led to invitations as a speaker at various conferences, where he shares insights on geotechnical engineering and sustainable practices, further establishing his reputation as a leader in the discipline.

Research Focus

Shamshad Alam’s research focuses on sustainable construction materials, geotechnical properties, and innovative engineering solutions. He is particularly interested in the utilization of waste materials in construction, aiming to promote eco-friendly practices within the industry. His work on the mechanical properties of alternative materials, such as fly ash and biopolymers, highlights his commitment to enhancing sustainability in civil engineering. Alam’s interdisciplinary research integrates aspects of material science and environmental engineering, aiming to mitigate the impact of construction practices on the environment.

Publication Top Notes

  1. Artificial neural network, machine learning modelling of compressive strength of recycled coarse aggregate based self-compacting concrete 🤖🏗️
  2. Geotechnical Properties of Fly Ash Blended Expansive Soil: A Review 📚🌍
  3. Sustainable Concrete Production: Utilizing Cow Dung Ash and Corn Stalk Ash as Eco-Friendly Alternatives 🌿🪴
  4. Effect of Biopolymer on Water Retention Property of Red Mud 💧🌱
  5. Strength and durability of self-curing concrete developed using calcium lignosulfonate 🧱💪
  6. Landslide susceptibility assessment in the Himalayan range based along Kasauli – Parwanoo road corridor using weight of evidence, information value, and frequency ratio 🏔️📊
  7. A comparative study between strength and durability of bentonite and natural gum stabilised sand 🏗️🌪️
  8. Impact of Steel Fiber on the Mechanical Property of Concrete Containing Mineral Admixture 🔩🔧
  9. Characterization and an Overview of Utilization and Neutralization for Efficient Management of Bauxite Residue for Sustainable Environment 🌍⚒️
  10. Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment 🏥💧

Conclusion

Dr. Shamshad Alam’s contributions to geotechnical materials and sustainable engineering practices position him as a strong candidate for the Best Researcher Award. His research not only pushes the boundaries of existing knowledge but also provides practical solutions that benefit both industry and academia. With continued engagement and visibility in the international research community, Dr. Alam is poised to make even greater strides in his field.

Qingliang Feng | Low dimensional materials | Best Researcher Award

Prof Qingliang Feng | Low dimensional materials | Best Researcher Award

Professor, Northwestern Polytechnical University, China

Qingliang Feng is a prominent researcher at Northwestern Polytechnical University in Xi’an, China. With a strong focus on materials science and optoelectronics, he has significantly contributed to the understanding and development of advanced semiconductor materials. His work is characterized by innovative approaches to enhancing the performance of electronic devices and energy storage solutions. Feng has published extensively, with over 70 articles and a citation count exceeding 5,900, showcasing his influence in the field. His research not only addresses fundamental scientific questions but also has practical implications for the development of next-generation electronic and optoelectronic devices.

Profile

Google Scholar

Scopus

Strengths for the Award

Qingliang Feng is an exceptional candidate for the Research for Best Researcher Award due to his substantial contributions to the field of materials science, particularly in the development of advanced semiconductor materials and optoelectronic devices. With an h-index of 35 and over 5,958 citations across 77 publications, his work demonstrates significant impact and recognition within the scientific community. Feng’s research has led to innovations in energy storage systems, photodetectors, and flexible electronics, reflecting both depth and breadth in his expertise. His ability to lead collaborative projects and mentor emerging researchers further enhances his qualifications for this award.

Areas for Improvement

While Dr. Feng has established a solid reputation in his field, there are areas for potential growth. Expanding his focus to include interdisciplinary collaborations could enhance the applicability of his research outcomes. Additionally, increasing public engagement and communication of his work to broader audiences could elevate his profile and impact beyond academia. Fostering partnerships with industry could also lead to practical applications of his research, aligning with the growing emphasis on translating scientific discoveries into real-world solutions.

Education

Qingliang Feng completed his undergraduate studies in Physics at a prestigious university in China, where he developed a solid foundation in material science. He then pursued his Master’s degree in Materials Science and Engineering, focusing on semiconductor materials. Following this, he obtained his Ph.D. in Materials Science, specializing in nanostructured materials and their applications in electronic devices. His educational background has provided him with the theoretical knowledge and practical skills necessary to excel in research and development in the rapidly evolving field of materials science.

Experience

Dr. Feng has extensive experience in both academia and research institutions. He began his career as a postdoctoral researcher, where he worked on various projects related to semiconductor fabrication and characterization. His role involved collaborating with multidisciplinary teams to explore innovative solutions for improving device performance. At Northwestern Polytechnical University, he has taken on various responsibilities, including supervising graduate students and leading research projects. His experience encompasses a range of topics, from nanomaterials to optoelectronic devices, and he has played a key role in establishing partnerships with industry stakeholders.

Awards and Honors

Dr. Feng has received several prestigious awards in recognition of his contributions to materials science and engineering. He was honored with the Outstanding Researcher Award at Northwestern Polytechnical University, which acknowledges his significant impact on the field. Additionally, he has been recognized for his innovative research with the National Science and Technology Progress Award in China. His work has not only advanced scientific knowledge but has also contributed to practical applications, earning him accolades from both academic and industrial sectors.

Research Focus

Qingliang Feng’s research focuses on the development and characterization of advanced semiconductor materials for electronic and optoelectronic applications. His interests include two-dimensional materials, organic-inorganic hybrids, and their applications in photodetectors, energy storage devices, and flexible electronics. He is particularly focused on improving device efficiency and performance through novel material synthesis and processing techniques. Feng’s work aims to bridge the gap between fundamental science and practical technology, contributing to the advancement of sustainable energy solutions and next-generation electronic devices.

Publication Top Notes

  1. All-Covalent Organic Framework Nanofilms Assembled Lithium-Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics 🔋
  2. Solution-Processable Large-Area Black Phosphorus/Reduced Graphene Oxide Schottky Junction for High-Temperature Broadband Photodetectors 🌡️
  3. Two-Dimensional Optoelectronic Memristive Device Realized by Ferroelectric Regulation 💡
  4. Modulating the Electronic Structure of VS2 via Ru Decoration for an Efficient pH-Universal Electrocatalytic Hydrogen Evolution Reaction 🔧
  5. Controlled Growth of Single-Crystalline 2D p-Type Semiconductor α-MnSe for Broadband Photodetector 📷
  6. Composition-Triggered Growth of Monolayer MoTe2(1−x)S2x Alloys with Coherent Phase Interfaces for High-Performance Broadband Photodetection 🔬
  7. High-Responsivity Self-Powered Deep-Ultraviolet Photodetector Based on n-SnS2/p-GaN Heterostructures 🔦
  8. Resolidified Chalcogen-Assisted Growth of Bilayer Semiconductors with Controlled Stacking Orders 📈
  9. Solution-Processed Black Phosphorus Film-Based Volatile Memristor for Encryption Applications 🔒
  10. Bending Resistance Covalent Organic Framework Superlattice: “Nano-Hourglass”-Induced Charge Accumulation for Flexible In-Plane Micro-Supercapacitors 📏

Conclusion

In conclusion, Qingliang Feng’s exemplary research contributions, coupled with his potential for growth in outreach and interdisciplinary collaboration, position him as a strong contender for the Research for Best Researcher Award. His continued commitment to advancing materials science and promoting innovative applications holds promise for significant future contributions to both academic and practical domains. Recognizing his efforts with this award would not only honor his achievements but also encourage further excellence in research within his field.

Roshan Khadka – Materials Science and Engineering – Best Researcher Award

Roshan Khadka - Materials Science and Engineering - Best Researcher Award

Plant and Food Research - New Zealand

AUTHOR PROFILE

SCOPUS

🎓 ACADEMIC EXCELLENCE IN CHEMICAL SCIENCE AND MATERIALS ENGINEERING

Roshan Khadka holds a PhD in Chemical Science from the University of Auckland, New Zealand (2019), with a thesis focused on the development of insect olfactory receptor-based biosensors. His academic journey includes a Master’s degree in Advanced Material Engineering from Kongju National University, South Korea (2015), where he studied the enhancement of optoelectrical properties of PEDOT-based thin films, and a Bachelor’s degree in Mechanical Engineering from Kathmandu University, Nepal (2012).

🔬 LEADING RESEARCHER IN MATERIALS SCIENCE AND BIOSENSORS

Currently, Roshan Khadka is an Associate Investigator at The MacDiarmid Institute for Advanced Materials and Nanotechnology and a Scientist at The New Zealand Institute for Plant and Food Research Limited. His work primarily involves the development and application of advanced materials, including biocompatible supercapacitors and conductive polymers for sensor applications. His role is crucial in advancing the frontiers of material science and its practical applications.

🧪 EXPERT IN CONDUCTIVE POLYMERS AND SENSOR TECHNOLOGIES

Roshan's research expertise extends to the development of hybrid conductive polymers and strain sensors, as evidenced by his contributions to publications such as the New Journal of Chemistry and ACS Applied Polymer Materials. His work on enhancing vapor phase hybridized polymers and graphene oxide-based materials highlights his innovative approach to improving sensor performance and material durability.

🔍 PIONEER IN BIOSENSOR TECHNOLOGIES AND INSECT OLFACTORY RECEPTORS

A significant part of Roshan Khadka’s research focuses on biosensors utilizing insect olfactory receptors. His studies have led to advancements in electrochemical detection of odorant compounds, demonstrated in journals like Sensors and Actuators B: Chemical and Biosensors and Bioelectronics. His work aims to create highly sensitive and specific detection systems, contributing to both scientific knowledge and practical applications.

📝 AUTHOR OF HIGH-IMPACT SCIENTIFIC PUBLICATIONS

Roshan has authored several influential papers on topics such as ammonia sensing and electrochemical stability in bioelectronic systems. His publications in journals such as Polymer and Rsc Advances showcase his contributions to the development of innovative materials and sensors, reflecting his commitment to advancing the field of materials science.

🌍 DEDICATED TO GLOBAL RESEARCH AND COLLABORATION

Throughout his career, Roshan Khadka has engaged in international research collaborations and held various roles, including post-doctoral scientist and project assistant. His experience spans multiple countries and institutions, reflecting his dedication to global scientific advancement and interdisciplinary research.

🎓 ACADEMIC TEACHING AND SUPERVISION EXPERIENCE

In addition to his research, Roshan has gained valuable experience as a Graduate Teaching Assistant and Examination Supervisor at the University of Auckland. His role in academic instruction and supervision underscores his commitment to education and mentorship within the scientific community.

NOTABLE PUBLICATION

A comparative study between vapor phase polymerized PPy and PEDOT - Thermoplastic polyurethane composites for ammonia sensing
Authors: F.D.M. Fernandez, R. Khadka, J.-H. Yim
Journal: Polymer
Year: 2021

Insect odorant receptor nanodiscs for sensitive and specific electrochemical detection of odorant compounds
Authors: J.A. Cheema, N. Aydemir, C. Carraher, A. Kralicek, J. Travas-Sejdic
Journal: Sensors and Actuators, B: Chemical
Year: 2021

Highly porous, soft, and flexible vapor-phase polymerized polypyrrole-styrene-ethylene-butylene-styrene hybrid scaffold as ammonia and strain sensor
Authors: F.D.M. Fernandez, R. Khadka, J.-H. Yim
Journal: RSC Advances
Year: 2020

Role of polyethylene oxide content in polypyrrole linear actuators
Authors: R. Khadka, P. Zhang, N. Tuan Nguyen, T.F. Otero, R. Kiefer
Journal: Materials Today Communications
Year: 2020

Synergistic improvement in the performance of insect odorant receptor based biosensors in the presence of Orco
Authors: R. Khadka, C. Carraher, C. Hamiaux, J. Travas-Sejdic, A. Kralicek
Journal: Biosensors and Bioelectronics
Year: 2020

Dure Najaf Iqbal – Materials Science and Engineering – Best Researcher Award

Dure Najaf Iqbal - Materials Science and Engineering - Best Researcher Award

University of Lahore - Pakistan

AUTHOR PROFILE

SCOPUS

🔬 EXPERTISE IN ORGANIC AND POLYMER CHEMISTRY

Dr. Dure Najaf Iqbal is an accomplished Associate Professor in the Department of Chemistry at The University of Lahore. With a PhD in Chemistry specializing in Organic and Polymer Chemistry from Lahore College for Women University, his research focuses on microwave-assisted synthesis, polymer chemistry, hydrogels, and synthetic organic techniques. His work in these fields is marked by advanced research skills and a strong command of analytical techniques.

🎓 ACADEMIC ACHIEVEMENTS AND EDUCATION

Dr. Iqbal's academic background reflects his dedication to chemistry. He earned his Bachelor’s and Master’s degrees from the University of the Punjab, Lahore, with a focus on Organic Chemistry. His doctoral research, supervised by Dr. Erum Akbar Hussain, involved the synthesis and characterization of autochthonic guar gum derivatives. His education has been supplemented by extensive training in analytical techniques, computer literacy, and literature review methodologies.

👩‍🏫 TEACHING EXPERIENCE AND IMPACT

With a rich teaching history, Dr. Iqbal has contributed significantly to the education sector. He served as an Assistant Professor at the University of the Punjab, where he successfully managed M.Phil. research projects. His earlier roles include teaching FSc. classes at Punjab Group of Colleges and Chemistry at the Beaconhouse School System, where he was involved in curriculum development and science exhibitions.

🏭 INDUSTRIAL EXPERIENCE IN CHEMICALS

Before transitioning to academia, Dr. Iqbal gained valuable industrial experience as a Lab Manager at MB Dyes Chemical and Silk Industry. This role provided him with practical insights into the chemical industry, enriching his understanding of applied chemistry and enhancing his research capabilities.

📜 SIGNIFICANT THESIS AND RESEARCH

Dr. Iqbal’s PhD thesis, “Synthesis and Characterization of Autochthonic Guar Gum Derivatives,” stands out for its innovative approach to polymer chemistry. His MSc. thesis on steroid extraction from medicinal plants also highlights his expertise in organic synthesis and characterization. His research has been presented at various international and national conferences, reflecting his active engagement in the scientific community.

🌐 CONFERENCE PARTICIPATION AND ORGANIZATION

Dr. Iqbal has been actively involved in numerous conferences and seminars, both as a participant and organizer. His contributions to events such as the International Conference on Materials Science and Nano Technology and the Conference on Recent Advances in Chemistry demonstrate his commitment to advancing the field of chemistry and fostering academic collaboration.

🛠️ COMPUTER LITERACY AND RESEARCH SKILLS

Proficient in essential software like Excel, MS-Word, Chem Window, and Chem Draw, Dr. Iqbal employs these tools to enhance his research and teaching activities. His ability to conduct thorough literature reviews and apply advanced statistical techniques underscores his strong analytical and research skills, which are critical for his work in polymer and organic chemistry.

NOTABLE PUBLICATION

Assessment of carcinogenic and non-carcinogenic risk of exposure to potentially toxic elements in tea infusions: Determination by ICP-OES and multivariate statistical data analysis
Authors: Ahmed, M., Ahmad, M., Khan, M.A., Wani, T.A., Zargar, S.
Year: 2024
Journal: Journal of Trace Elements in Medicine and Biology

Development and characterization of a biodegradable film based on guar gum-gelatin@sodium alginate for a sustainable environment
Authors: Shah Bukhary, S.K.H., Choudhary, F.K., Iqbal, D.N., Ali, I., Ahmed, M.
Year: 2024
Journal: RSC Advances

Efficient drug delivery potential and antimicrobial activity of biocompatible hydrogels of dextrin/Na-alginate/PVA
Authors: Nazir, A., Abbas, M., Kainat, F., Alshawwa, S.Z., Iqbal, M.
Year: 2024
Journal: Heliyon

Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications
Authors: Haider, A., Khan, S., Iqbal, D.N., Kanwal, Q., Mustafa, G.
Year: 2024
Journal: European Polymer Journal

Fabrication of CMC/PVA/Dextrin-Based Polymeric Membrane for Controlled Release of Cefixime With Enhanced Antibacterial Activity
Authors: Nazir, A., Abbas, M., Iqbal, D.N., Ahmad, N., Iqbal, M.
Year: 2024
Journal: Dose-Response

Nanocellulose/wood ash-reinforced starch-chitosan hydrogel composites for soil conditioning and their impact on pea plant growth
Authors: Iqbal, D.N., Tariq, Z., Philips, B., Ali, I., Ahmed, M.
Year: 2024
Journal: RSC Advances

Yao Liu – Materials Physics and Chemistry – Best Researcher Award

Yao Liu - Materials Physics and Chemistry - Best Researcher Award

Central South University - China

AUTHOR PROFILE

SCOPUS

EXPERT IN THERMAL DAMAGE CONTROL AND HEAT TRANSFER

Yao Liu is a distinguished researcher in the field of Mining Engineering, focusing on thermal damage control in deep wells and geothermal exploitation in mines. His work involves studying the heat transfer characteristics of multi-field coupling and the microstructure and basic physical properties of porous materials, which are crucial for the stability and efficiency of geothermal systems.

PH.D. CANDIDATE AT CENTRAL SOUTH UNIVERSITY

Currently pursuing his Ph.D. at Central South University under the supervision of Prof. Hongwei Deng, Yao is dedicated to advancing the understanding of thermal and mechanical properties of materials in mining engineering. His doctoral research continues to build on his extensive background in the field.

EDUCATIONAL BACKGROUND IN MINING ENGINEERING

Yao holds a Master's degree from Central South University, where his thesis focused on the mechanical properties of granular materials and slope stability in cold regions. He also earned his Bachelor's degree from Jiangxi University of Science and Technology, where he designed a mining plan for the Baoshan lead-zinc mine.

LEADER IN RESEARCH PROJECTS

As the director of a research project on the mechanical characteristics of granular mass in cold region waste dumps, Yao has demonstrated his capability to lead significant research initiatives. He has also participated in a national project studying the disaster mechanisms in cold region dumps, funded by the National Natural Science Foundation of China.

AWARDED ACADEMIC SCHOLARSHIPS

Yao has been recognized for his academic excellence with multiple first-class academic scholarships from Central South University. His consistent performance and dedication have also earned him an enterprise scholarship, highlighting his commitment to academic and research excellence.

PROLIFIC RESEARCHER AND AUTHOR

Yao has contributed to several high-impact publications, including studies on the influence of aggregate sizes on pore structures and mechanical characteristics of cement mortar, and the multi-factor analysis of aggregate grading on pore structure characteristics. His work is published in renowned journals such as Construction and Building Materials and the Journal of Building Engineering.

SPECIALIST IN PORE STRUCTURE ANALYSIS

His research on the pore structure characteristics of materials, particularly under different freeze-thaw cycles, and the development of strength prediction models based on fractal theory, showcases his expertise in understanding and optimizing the microstructural properties of construction materials.

NOTABLE PUBLICATION

Properties of Cement Thermal Insulation Materials Containing Tailing Waste for Connecting Mines Assessed Using the Orthogonal Method with the Response Surface Method.
Authors: H. Deng, C. Ran, Y. Liu
Year: 2023
Journal: Processes, 11(9), 2652

Study on Permeability Performance of Cemented Tailings Backfill Based on Fractal Characteristics of Pore Structure.
Authors: Y. Liu, H. Deng
Year: 2023
Journal: Construction and Building Materials, 365, 130035

Association Study on the Pore Structure and Mechanical Characteristics of Coarse-Grained Soil under Freeze–Thaw Cycles.
Authors: Y. Liu, H. Deng, J. Xu, G. Tian, J. Deng
Year: 2022
Journal: Minerals, 12(3), 314

Research on Strength Prediction Model and Microscopic Analysis of Mechanical Characteristics of Cemented Tailings Backfill under Fractal Theory.
Authors: H. Deng, T. Duan, G. Tian, Y. Liu, W. Zhang
Year: 2021
Journal: Minerals, 11(8), 886

Study on the Strength Evolution Characteristics of Cemented Tailings Backfill from the Perspective of Porosity.
Authors: H. Deng, Y. Liu, W. Zhang, S. Yu, G. Tian
Year: 2021
Journal: Minerals, 11(1), pp. 1–14, 82

Bankim Chandra Ray – New Structural Materials – Best Researcher Award

Bankim Chandra Ray - New Structural Materials - Best Researcher Award

National Institute of Technology - India

AUTHOR PROFILE

GOOGLE SCHOLAR

PROFESSIONAL BACKGROUND

Dr. Bankim Chandra Ray holds the position of Professor in the Department of Metallurgical and Materials Engineering at National Institute of Technology, Rourkela, India. With over 33 years of teaching experience at this premier institute, his research focuses on the environmental impact on FRP composites, particularly exploring mechanistic origins of damage phenomena and the synthesis of polymer nanocomposites under ultra-low temperatures using sono-electro-chemical principles.

RESEARCH EXPERTISE AND CONTRIBUTIONS

His scholarly work spans diverse areas including solidification behavior of Al-Si alloys, micro-examinations of interfaces in metal matrix systems, and computer modeling of phase transformations in ferrous materials. Notably, he investigates the role of carbon nanotubes in enhancing the low-temperature performance of FRP nano-composites. Dr. Ray has authored 247 scientific papers, with 146 published in international journals, and serves as a regular reviewer for high-impact journals in composites and materials science.

ACADEMIC LEADERSHIP AND INSTITUTIONAL ROLES

Throughout his career, Dr. Ray has held various leadership positions at NIT Rourkela, including Dean of Faculty Welfare, Head of the Department of Metallurgical and Materials Engineering, and currently as a Professor HAG. He also serves as Technical Advisor to TATA Steel New Materials Business and Editor of Transactions of the Indian Institute of Metals (TIIM) published by Springer. He coordinates multi-crore integrated Research and Development proposals, notably establishing the Steel Technology Centre at NIT Rourkela.

RECOGNITIONS AND ACHIEVEMENTS

Dr. Ray’s contributions have earned him global recognition, being listed among the world’s top 2% scientists consecutively in 2020 and 2021 by Stanford University. He has been appointed Editor of TIIM and has chaired significant workshops and seminars on FRP composites. His keynote lectures on environmental durability and mechanical behavior of composites have made substantial impacts in both academic and industrial circles.

PROFESSIONAL MEMBERSHIPS AND SERVICE

Active in professional societies, Dr. Ray holds memberships in Indian Institute of Metals, The Institute of Engineers (India), The Indian Institute of Chemical Engineers, The Computer Society of India, and The Indian Society of Technical Education. He contributes extensively to academic journals as Editor-in-Chief and advisory board member, furthering the discourse in manufacturing, material science, and metallurgical engineering.

NOTABLE PUBLICATION

Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: An assessment of the influence of functional groups 2019 (116)

Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: An emphasis on graphene oxide content 2017 (113)

Effect of post-curing on thermal and mechanical behavior of GFRP composites 2015 (135)

Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content 2016 (179)