Sukarman Sukarman | Materials Science and Engineering | Best Researcher Award

Mr . Sukarman Sukarman | Materials Science and Engineering | Best Researcher Award

Universitas Buana Perjuangan Karawang , Indonesia

Sukarman, a lecturer at Universitas Buana Perjuangan Karawang and a Ph.D. candidate in Mechanical Engineering, is a promising researcher with a strong focus on nanomaterials, nanofluids, and thermal-fluid sciences. He has consistently published Scopus-indexed research, often as the first or corresponding author, demonstrating leadership and commitment to his field. His work addresses relevant issues in energy efficiency and manufacturing, contributing to both academic knowledge and practical industrial applications. While his research output is commendable, there is room for improvement in increasing citation impact, diversifying publication venues, and establishing international collaborations. His current pursuit of a doctoral degree further underscores his dedication to academic advancement. Overall, Sukarman’s research performance, publication consistency, and focus on emerging engineering topics make him a strong candidate for the Best Researcher Award, particularly at the national or institutional level, with significant potential for future growth and wider academic impact.

PROFESSIONAL PROFILE

EDUCATION🎓

Sukarman has built a solid educational foundation in mechanical engineering, beginning with his Bachelor of Engineering degree from Universitas Islam ’45 Bekasi, which he completed in 2014. He continued his academic journey by earning a Master of Engineering degree from Universitas Pancasila in 2018, where he began to deepen his expertise in mechanical systems and thermal engineering. Currently, he is pursuing a Ph.D. in Mechanical Engineering at Universitas Sebelas Maret, Surakarta, further advancing his specialization in nanomaterials, nanofluids, and energy-efficient technologies. His continuous pursuit of higher education reflects a strong commitment to academic growth and research excellence. Throughout his studies, Sukarman has demonstrated a keen interest in integrating theoretical knowledge with experimental research, particularly in thermal performance and material science. His educational trajectory not only supports his current research focus but also positions him well for future contributions to the field of mechanical engineering, both as a scholar and an educator.

PROFESSIONAL EXPERIENCE📝

Sukarman serves as a lecturer in the Department of Mechanical Engineering at Universitas Buana Perjuangan Karawang, where he plays a key role in teaching, research, and academic development. His professional journey reflects a strong dedication to both education and research, particularly in the areas of nanomaterials, thermal systems, and manufacturing processes. In addition to his teaching responsibilities, he actively supervises student projects and contributes to curriculum enhancement within his department. Sukarman has successfully integrated his research interests into his academic role, publishing multiple Scopus-indexed papers and leading several studies as the first or corresponding author. His hands-on experience in experimental mechanics, coupled with his academic background, allows him to bring real-world engineering challenges into the classroom. His involvement in conferences, journal publications, and applied research initiatives demonstrates a commitment to advancing mechanical engineering both in theory and practice. Sukarman’s professional experience showcases a balanced blend of academic leadership and technical expertise.

RESEARCH INTEREST

Sukarman’s research interests lie at the intersection of advanced materials and thermal-fluid sciences, with a particular focus on nanomaterials, nanofluids, and their applications in mechanical and energy systems. He is deeply engaged in exploring how nanomaterials can enhance the thermal conductivity and efficiency of industrial cooling systems, especially in processes like plastic injection molding and transformer cooling. His work also extends to manufacturing processes, including metal forming and resistance spot welding, where he investigates optimization techniques to improve mechanical performance and energy use. Sukarman is interested in experimental mechanics, applying hands-on testing methods to validate models and improve system designs. His research contributes to solving practical engineering challenges while also advancing theoretical understanding in heat transfer, energy efficiency, and sustainable materials. This blend of applied and experimental research underlines his commitment to innovation in mechanical engineering, making his work relevant to both academic and industrial advancements in energy and manufacturing technologies.

AWARD AND HONOR🏆

While specific awards and honors have not been listed, Sukarman’s growing body of peer-reviewed publications and his active role as a first or corresponding author in multiple Scopus-indexed journals reflect academic recognition and professional respect within his field. His selection as a lead author in research involving advanced nanofluids and mechanical systems optimization demonstrates the trust and acknowledgment he has earned from his academic peers and collaborators. Additionally, his ongoing Ph.D. studies and increasing involvement in high-impact research indicate a trajectory toward greater academic distinction. As a faculty member contributing significantly to research and education, he is well-positioned for future honors, such as best paper awards, research grants, or institutional recognitions. His commitment to high-quality research, innovation in mechanical engineering, and consistent scholarly output mark him as a strong candidate for future accolades, including the Best Researcher Award, as his contributions continue to grow in relevance and impact within the academic and engineering communities.

RESEARCH SKILL🔬

Sukarman possesses strong and diverse research skills that are well-aligned with the demands of modern mechanical engineering. His expertise spans experimental design, data analysis, materials characterization, and process optimization. He demonstrates a solid command of nanomaterials and nanofluids, particularly in enhancing thermal performance for industrial applications. His ability to design and conduct complex experiments—such as investigating heat transfer behavior in customized cooling systems or analyzing mechanical properties in metal forming—shows a high level of technical competence. Sukarman is skilled in using tools such as Taguchi Design of Experiments (DOE) for optimization and various analytical techniques for material and thermal analysis. His multiple first-author publications indicate proficiency in academic writing, literature review, and scientific communication. Furthermore, his collaborative work across projects reflects his ability to work within interdisciplinary teams. These research skills not only support his current projects but also equip him to contribute meaningfully to innovation and applied research in mechanical engineering.

CONCLUSION

Sukarman stands out as an emerging expert in nanomaterials and mechanical engineering research. His career merges academic instruction with experimental discovery, producing practical results that advance both theory and application. He consistently contributes to high-quality research, demonstrating a passion for developing sustainable technologies in energy and materials science. With strong publication credentials and an evolving academic profile, Sukarman is well-positioned to influence next-generation mechanical engineering practices. His pursuit of excellence in research and education ensures a lasting impact on both students and the broader engineering community.

PUBLICATIONS

Enhancing Thermal Conductivity of TiO₂-3%F⁺/MEG-40 Binary Nanofluid for Sustainable Cooling Systems in Plastic Injection Molding Applications

  • Authors: Sukarman, Budi Krisitiawan, Eko Prasetya Budiana, Khoirudin, Amri Abdulah

  • Journal: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

  • Year: 2025

Heat Transfer Characteristic of Al₂O₃ Nanofluid with Naphthenic Transformers Oil as Base Fluid

  • Authors: Khoirudin, Budi Kristiawan, Budi Santoso, Sukarman, Amri Abdulah

  • Journal: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

  • Year: 2025

 

Mohammad Sadegh Shakeri | Materials Science and Engineering | Innovations in Materials Engineering Award

Dr. Mohammad Sadegh Shakeri | Materials Science and Engineering | Innovations in Materials Engineering Award

Assistant Professor at Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland

Dr. Mohammad Sadegh Shakeri is an accomplished materials scientist with extensive expertise in magnetic materials and nanostructures. Currently an Assistant Professor at the Institute of Nuclear Physics Polish Academy of Sciences in Krakow, Poland, he specializes in the study of photocatalytic materials, their synthesis, and applications. With a solid foundation in materials science and engineering, his academic journey reflects a commitment to advancing the field through research and innovation.

Profile

Orcid

Education

Dr. Shakeri completed his education in Materials Science and Engineering, earning a Ph.D. from the Materials & Energy Research Centre in Iran (2017). His academic credentials include a Master’s degree from the University of Tabriz (2012) and a Bachelor’s degree from Sahand University of Technology (2009). His educational background has equipped him with the theoretical knowledge and practical skills necessary for tackling complex challenges in materials research.

Experience

Dr. Shakeri has held several notable positions throughout his career. He is currently engaged as an Assistant Professor in the Department of Magnetic Materials and Nanostructures. Prior to this, he served as a postdoctoral researcher at the same institute and held visiting researcher roles in Germany and France. His diverse experience also includes positions as a lecturer at Faradars Virtual University and as an R&D specialist in a private company, where he applied his scientific expertise in practical settings.

Research Interests

His research interests focus on the synthesis and characterization of advanced materials, particularly in the realm of photocatalysis and nanotechnology. Dr. Shakeri investigates the mechanisms underlying material properties, employing techniques such as density functional theory (DFT) and molecular dynamics simulations to explore the electronic structures and behavior of nanostructures during various processes, including laser irradiation.

Awards

Dr. Shakeri has received several prestigious awards recognizing his contributions to materials science. In 2023, he was honored with the Polish Ministry of Science and Education Scholarship for Outstanding Young Scientists. He also received the PSRS Award from the Polish Synchrotron Radiation Society in 2024 and was named Scientist of the Year by the Institute of Nuclear Physics Polish Academy of Sciences in the same year. His accolades reflect his dedication to excellence in research and teaching.

Publications

Dr. Shakeri has authored and co-authored a number of publications in reputable journals, contributing significantly to the field of materials science. Key publications include:

Shakeri, M.S. et al. “Effect of hydroxyapatite coating on corrosion behavior and nickel release of NiTi shape memory alloy,” Materials and Corrosion, 2014. DOI: 10.1002/maco.201206950.

Maleki-Ghaleh, H., Shakeri, M.S. “Electrochemical and cellular behavior of ultrafine-grained titanium in vitro,” Materials Science and Engineering C, 2014. DOI: 10.1016/j.msec.2014.03.001.

Shakeri, M.S. et al. “Influence of Fe3O4 Nanoparticles in Hydroxyapatite Scaffolds on Proliferation of Primary Human Fibroblast Cells,” Journal of Materials Engineering and Performance, 2016. DOI: 10.1007/s11665-016-2086-4.

Delbari, S.A., Shakeri, M.S. et al. “Characterization of TiC ceramics with SiC and/or WC additives,” Journal of the Taiwan Institute of Chemical Engineers, 2021. DOI: 10.1016/j.jtice.2021.05.039.

Yu, H., Shakeri, M.S. et al. “HRTEM study and mechanical properties of ZrB2–SiC composite,” International Journal of Refractory Metals and Hard Materials, 2022. DOI: 10.1016/j.ijrmhm.2022.105789.

His work has been well-cited in the scientific community, underscoring his impact on the field.

Conclusion

In summary, Dr. Mohammad Sadegh Shakeri is a dedicated researcher and educator whose contributions to materials science are noteworthy. His extensive background in materials engineering, combined with a focus on innovative research and collaboration, positions him as a leading figure in the study of magnetic materials and nanostructures. Through his teaching and research, he continues to inspire future generations of scientists and advance the understanding of complex materials systems.

Ameelia Roseline | Materials Science and Engineering | Best Researcher Award

Dr. Ameelia Roseline | Materials Science and Engineering | Best Researcher Award

Continue reading “Ameelia Roseline | Materials Science and Engineering | Best Researcher Award”

Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assist. Prof. Dr Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assistant Professor, Concordia University, Canada

Dr. Hang Xu is an Assistant Professor in the Department of Mechanical, Industrial, and Aerospace Engineering at Concordia University, Montreal, Canada. With a Ph.D. in Mechanical Engineering from McGill University and an MSc in Aircraft Design from Beijing University of Aeronautics and Astronautics, Dr. Xu specializes in mechanical metamaterials, smart structures, and additive manufacturing. His research focuses on developing advanced materials with programmable morphing and motion for aerospace, medical, and robotic applications. Prior to joining Concordia, he held research positions at Imperial College London and Siemens, contributing to innovations in multi-stable structures, soft robotics, and medical devices. Dr. Xu is recognized for his teaching excellence and has received awards for his contributions to research during the COVID-19 pandemic.

Professional Profile

Orcid

Scopus

Education 🎓

  • Doctorate in Mechanical Engineering, McGill University (2013–2018)
    Supervisor: Damiano Pasini
  • Master’s Thesis in Aircraft Design, Beijing University of Aeronautics and Astronautics (2011–2013)
    Supervisor: Yuanming Xu
  • Bachelor’s in Aircraft Design and Engineering, Shenyang Aerospace University (2007–2011)
    Supervisor: Weiping Zhang

Experience 💼

  • Assistant Professor, Concordia University (2022–Present)
    Research on functional/smart metamaterials for aerospace, nautical, and medical applications.
  • Research Associate, Imperial College London (2020–2022)
    Developed multi-stable structures, soft robots, and medical devices.
  • Postdoctoral Researcher, McGill University (2018–2020)
    Worked on thermally actuated deployable mechanisms and additive manufacturing processes.
  • Internships: Chinese Aircraft Design Institute of Aviation Medicine (2012–2013) and Shenyang Aircraft Design Institute (2010–2011).

Awards and Honors 🏆

  • Teaching Excellence Award, Concordia University (2023)
  • Associate Fellowship of the Higher Education Academy (AFHEA), UK (2022)
  • Excellent Contribution to Research in COVID-19 Pandemic, Imperial College London (2021)
  • Winner of 3D-Printing Workshop Design Challenge, McGill University (2019)

Research Focus 🔬

Dr. Xu’s research focuses on mechanical metamaterialssmart materials and structures, and additive manufacturing. His work aims to develop materials with programmable morphing and motion for applications in aerospace structuressoft roboticsmedical devices, and composite materials. Key areas include multiscale mechanics, finite element analysis, and the design of multi-stable structures for innovative functionalities.

Publication Top Notes 📚

  1. Embedded pressure sensing metamaterials using TPU-graphene composites and additive manufacturing
  2. Generalized tessellations of superellipitcal voids in low porosity architected materials for stress mitigation
  3. Thermally actuated hierarchical lattices with large linear and rotational expansion
  4. Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  5. ABAQUS user subroutine UMAT for elastoplastic nonlinear kinematic hardening material (Mróz model) with anisotropic plasticity
  6. Digitally Programmable Architected Materials with Static and Dynamic Reconfiguration
  7. Multi-stable meta-materials with programmable reconfigurations for soft robots
  8. 3D printed soft metamaterial force sensors for gait monitoring using TPU-graphene composites
  9. Overcoming the strength-modulus tradeoff using double network metamaterial lattices
  10. Multi-stable architectured materials with high-mobility morphing

Conclusion 🌟

Dr. Hang Xu is a leading researcher in mechanical metamaterials and smart structures, with a strong focus on innovative applications in aerospace, robotics, and medical devices. His contributions to teaching, research, and industry collaborations highlight his commitment to advancing materials science and engineering. Through his work, Dr. Xu continues to push the boundaries of programmable materials, paving the way for future technological advancements. 🚀

 

AHMED MOHAMMED BAYOUMY – Materials Science and Engineering – Best Researcher Award

AHMED MOHAMMED BAYOUMY - Materials Science and Engineering - Best Researcher Award

Faculty of Science, Ain Shams University - Egypt

AUTHOR PROFILE

SCOPUS

WORK EXPERIENCE AND EDUCATION:

AHMED MOHAMMED BAYOUMY has extensive experience in teaching and research. He has been a Teaching Assistant at the Faculty of Science, Ain Shams University since December 2018, and previously served as a Demonstrator from February 2013 to December 2018. Ahmed is currently pursuing a PhD in Nanoscience at the Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST) in Alexandria, Egypt, expected to complete in April 2024. He holds an MSc in Biophysics from Ain Shams University, where he conducted significant research on water purification using nanomodified natural polymers.

TEACHING AND LABORATORY INSTRUCTION:

At Ain Shams University, AHMED MOHAMMED BAYOUMY has demonstrated and discussed experiments in physics and biophysics labs for undergraduate students. He has provided assistance in problem-solving sessions and supervised senior students' graduation projects, ensuring they meet their academic requirements and gain practical experience in their fields of study.

RESEARCH IN NANOSCIENCE:

AHMED's PhD research focuses on nanoscience, particularly in the interaction between biopolymers and organic pollutants for water purification. His MSc thesis involved studying the interaction between chitosan biopolymer and ibuprofen to remove ibuprofen from water, combining theoretical molecular modeling and experimental adsorption trials to validate the interaction mechanism.

WATER PURIFICATION RESEARCH:

One of AHMED's significant contributions is his research on water purification using nanomodified natural polymers. His work has demonstrated the potential of biopolymers in removing organic pollutants from water, contributing to advancements in environmental science and sustainable water treatment technologies.

PUBLICATIONS AND ACADEMIC CONTRIBUTIONS:

AHMED has authored multiple research papers in prestigious journals. His publications cover various topics, including the interaction of biopolymers with graphene for bio-electronic applications, polysulfone-based mixed matrix membranes for wastewater treatment, and inkjet-printed supercapacitor electrodes. His work is widely recognized and cited in the scientific community.

COLLABORATIVE RESEARCH:

AHMED has collaborated with numerous researchers and institutions on projects that address global challenges in water treatment and environmental protection. His interdisciplinary approach and dedication to innovation have resulted in significant advancements in his field, showcasing his ability to work effectively in diverse research environments.

ACADEMIC ACHIEVEMENTS:

Throughout his academic career, AHMED has received accolades for his contributions to science and education. His dedication to teaching, research, and collaborative projects has made him a respected figure in the academic community, with a promising future in nanoscience and biophysics research.

NOTABLE PUBLICATION

Physical prospective of polyamide 6 for the consolidation of fragile vegetable tanned Leather artifacts
Authors: Abdel-Maksoud, G., Mohamed, O.A., Mohamed, W.S., Elhaes, H., Ibrahim, M.A.
Year: 2024
Journal: Journal of Cultural Heritage

Polysulfone-based mixed matrix membranes loaded with a multifunctional hierarchical porous Ag-Cu dendrites@SiO2 core-shell nanostructure for wastewater treatment
Authors: Sadek, A.H., Abdel-Karim, A., Mohsenpour, S., Ibrahim, M., Mohamed, G.G.
Year: 2023
Journal: Process Safety and Environmental Protection

Interaction of biopolymers with graphene for bio-electronic applications
Authors: Bayoumy, A.M., Ibrahim, M.A., Osman, A., Abdelmoneim, A.
Year: 2023
Journal: Optical and Quantum Electronics
Volume: 55(7)
Article: 622

InkJet-Printed Supercapacitor Electrodes of Graphene-Carboxymethyl Cellulose Biocomposite Ink
Authors: Bayoumy, A.M., Ibrahim, M.A., Osman, A., Abdelmoneim, A.
Year: 2023
Journal: Solid State Phenomena

Exploring the electronic, optical, and bioactive properties for new modified fullerenes via molecular modeling
Authors: El-Mansy, M.A.M., Bayoumy, A.M., Elhaes, H., Ibrahim, M.A.
Year: 2023
Journal: Optical and Quantum Electronics
Volume: 55(1)
Article: 100