Fei Mao | Materials Science and | Best Researcher Award

ProfDr. Fei Mao | Materials Science and Engineering | Best Researcher Award

Researcher at Jiangsu University Affiliated People’s Hospital, China

Prof. Fei Mao is a highly accomplished biomedical researcher specializing in mesenchymal stem cells, exosomes, and their therapeutic applications in inflammatory bowel disease (IBD) and colorectal cancer. With over two decades of academic experience and a strong publication record spanning high-impact journals, his research demonstrates significant depth and innovation. His work has advanced understanding of molecular mechanisms such as miRNA regulation, pyroptosis, and gut microbiota interactions, highlighting its translational relevance. Prof. Mao’s international exposure, including a postdoctoral fellowship at MD Anderson Cancer Center, adds further value to his global scientific perspective. While expanding research breadth, increasing sole authorship in top-tier journals, and detailing grant and citation metrics could strengthen his profile, his consistent focus and leadership in this niche field make him a strong candidate for the Best Researcher Award. His contributions have had a meaningful impact on regenerative medicine and the potential treatment of chronic gastrointestinal diseases.

Professional Profile

Education🎓

Prof. Fei Mao has a strong academic foundation rooted in medical and pharmaceutical sciences. He began his academic journey with a Bachelor’s degree in Medical Examination from the School of Medicine at Jiangsu University (1997–2002), followed by a Master’s degree in Pharmacognostics at the College of Food Science and Technology, also at Jiangsu University (2002–2005). He further advanced his expertise by earning a Ph.D. in Medicine from the School of Medicine, Jiangsu University (2004–2010), where he developed a strong focus on biomedical research. To broaden his research experience and global exposure, he completed a postdoctoral fellowship at the prestigious MD Anderson Cancer Center, University of Texas, USA (2012–2014), one of the world’s leading cancer research institutions. Since 2018, Prof. Mao has been serving as a Professor at the School of Medicine, Jiangsu University, where he continues to lead research initiatives and mentor the next generation of medical scientists.

Professional Experience📝

Prof. Fei Mao has built a distinguished professional career in biomedical research and academia. He began his postdoctoral training at the renowned MD Anderson Cancer Center, University of Texas, USA (2012–2014), where he deepened his expertise in cancer biology and regenerative medicine. Upon returning to China, he joined the School of Medicine at Jiangsu University, where he has served as a Professor since 2018. In this role, he has led numerous research projects focused on mesenchymal stem cells, exosomes, and their therapeutic applications in inflammatory bowel disease and colorectal cancer. His professional work is characterized by a strong translational focus, aiming to bridge the gap between laboratory findings and clinical treatments. Prof. Mao has published extensively in peer-reviewed journals, contributed to scientific reviews and book chapters, and collaborated with international researchers. His leadership in academic research and dedication to innovation have earned him recognition as a key figure in his field.

Research Interest🔎

Prof. Fei Mao’s research interests lie at the intersection of regenerative medicine, immunology, and gastrointestinal diseases. His primary focus is on the therapeutic potential of mesenchymal stem cells (MSCs) and exosomes in treating inflammatory bowel disease (IBD) and related colorectal cancer. He is particularly interested in understanding the molecular and cellular mechanisms through which MSCs and their exosomes modulate immune responses, regulate macrophage function, and influence pathways such as ubiquitination, pyroptosis, ferroptosis, and the gut microbiota-metabolome axis. By exploring the roles of microRNAs, long non-coding RNAs, and key signaling pathways like JAK/STAT and ERK, his research aims to uncover novel therapeutic targets and improve treatment strategies for chronic inflammatory conditions. Prof. Mao’s work bridges basic science and clinical application, contributing to the development of next-generation cell-based therapies. His dedication to this niche field positions him as a leading researcher in stem cell therapy and gastrointestinal disease intervention.

Award and Honor🏆

While specific awards and honors are not explicitly listed in the provided profile, Prof. Fei Mao’s academic achievements and research contributions strongly suggest a career marked by professional recognition. His appointment as a Professor at Jiangsu University since 2018 reflects institutional trust and recognition of his expertise. His postdoctoral fellowship at the prestigious MD Anderson Cancer Center, University of Texas, indicates international recognition of his potential and scientific capability. Additionally, his extensive publication record in reputable international journals highlights his research impact and standing within the scientific community. His collaborative work with global researchers and leadership in innovative studies on stem cell therapies for inflammatory bowel disease further underline his influence in the field. It is likely that Prof. Mao has received internal university commendations, research grants, and possibly national or regional awards in China, which would be consistent with the level of academic productivity and impact demonstrated throughout his career.

Research Skill🔬

Prof. Fei Mao possesses a comprehensive and advanced set of research skills in the fields of regenerative medicine, molecular biology, and immunology. His expertise lies in the isolation and therapeutic application of mesenchymal stem cells (MSCs) and exosomes, particularly in the treatment of inflammatory bowel disease (IBD) and colorectal cancer. He is highly skilled in designing and conducting in vivo and in vitro experiments, utilizing mouse models to study disease mechanisms and therapeutic outcomes. Prof. Mao has extensive experience in molecular techniques such as gene expression analysis, microRNA profiling, western blotting, immunohistochemistry, and pathway analysis involving signaling molecules like NF-κB, JAK/STAT, and ERK. He also has strong capabilities in gut microbiota and metabolomic research, integrating omics technologies to understand host-microbe interactions. His ability to translate complex molecular findings into therapeutic insights demonstrates not only technical proficiency but also a deep understanding of biomedical research with clinical relevance.

Conclusion💡

Prof. Fei Mao is a highly suitable candidate for a Best Researcher Award, particularly in the biomedical and translational medicine fields. His focused research on mesenchymal stem cells and inflammatory diseases has made valuable contributions to both basic science and potential clinical applications.

While some diversification and additional metrics (citations, grants) would further validate his standing, his sustained publication output, innovative methodologies, and international experience strongly support the merit of this nomination.

Publications Top Noted✍

  1. Title: Advancing therapeutic strategies for graft-versus-host disease by targeting gut microbiome dynamics in allogeneic hematopoietic stem cell transplantation: current evidence and future directions
    Authors: Not provided
    Year: Not provided
    Citations: 0

  2. Title: Human umbilical cord mesenchymal stem cell-derived exosomes repair IBD by activating the SIRT1-FXR pathway in macrophages
    Authors: Not provided
    Year: 2025
    Citations: 0

  3. Title: The role of COX-2 and its use as a therapeutic target in IBD and related colorectal cancer
    Authors: Not provided
    Year: Not provided
    Citations: 0

  1. Title: Mesenchymal stem cell in immunomodulation of dendritic cells: Implications for inflammatory bowel disease therapy
    Authors: Not provided
    Year: Not provided
    Citations: 0

  2. Title: HucMSC-Ex alleviates inflammatory bowel disease by regulating O-GlcNAcylation modification of RACK1 in intestinal epithelial cells
    Authors: Not provided
    Year: 2025
    Citations: 0

  1. Title: Flos lonicerae polysaccharide alleviates inflammatory bowel disease by improving intestinal microbiota and inhibiting oxidative stress and the NF-κB pathway
    Authors: Not provided
    Year: 2025
    Citations: 0

  1. Title: Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review)
    Authors: Not provided
    Year: Not provided
    Citations: 2

  1. Title: The role of suppressor of cytokine signaling 3 in inflammatory bowel disease and its associated colorectal cancer
    Authors: Not provided
    Year: Not provided
    Citations: 0

  1. Title: Intestinal mucus barrier: A potential therapeutic target for IBD
    Authors: Not provided
    Year: Not provided
    Citations: 5

  2. Title: Mechanism of cell death and its application in the repair of inflammatory bowel disease by mesenchymal stem cells
    Authors: Not provided
    Year: Not provided
    Citations: Not provided

Xuemei Wei | Materials Science and Engineering | Best Paper Award

Dr Xuemei Wei | Materials Science and Engineering | Best Paper Award


Assistant Researcher, Shaoxing University, China

Dr. Xuemei Wei is an accomplished researcher specializing in metal-organic chemistry and catalysis. She holds a Ph.D. in Physical Chemistry from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. Her expertise lies in the development of nano-catalytic materials for environmental and energy applications. With over 12 SCI publications in high-impact journals, she has made significant contributions to catalyst design and chemical transformations. Currently, she serves as an Assistant Researcher at Shaoxing University, where she advances research in pharmaceutical and chemical sciences. Her work integrates innovative nanomaterials to address environmental challenges and sustainable energy solutions.

PROFESSIONAL PROFILE

Scopus

EDUCATION

🎓 Ph.D. in Physical Chemistry – Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (2018-2021)
📝 Thesis: Design and Mechanism of Efficient Carbonylation Catalysts under Ambient Conditions.
🎓 M.Sc. in Inorganic Chemistry – Inner Mongolia University (2013-2016)
🎓 B.Sc. in Chemistry – Jilin Normal University (2009-2013)

PROFESSIONAL EXPERIENCE

🔬 Assistant Researcher – Shaoxing University, College of Chemistry and Chemical Engineering (2021-Present)
🔍 Focus: Development of nano-catalytic materials for industrial and environmental applications.
🧪 R&D Specialist – Changchun Zhongke Haorong New Materials Research Co., Ltd. (2016-2018)
🚀 Developed and optimized catalytic materials for large-scale industrial use.

AWARDS & HONORS

🏆 Recognized for research contributions in metal-organic chemistry.
📜 Multiple SCI-indexed publications in top-tier journals.
🌍 Acknowledged for innovative approaches in environmental catalysis.

RESEARCH FOCUS

🧪 Catalysis Under Ambient Conditions: Development of carbonylation catalysts for industrial applications.
🌱 Environmental Nanomaterials: Engineering nanomaterials for pollutant degradation and remediation.
Sustainable Energy Catalysis: Exploring hydrodeoxygenation reactions for green chemistry solutions.

PUBLICATION TOP NOTES

📄 Turning on Ambient Conditions Hydrodeoxygenation of Biobased Aromatic Alcohols – Energy Conversion and Management (2025)
📄 Construction of MXene-loaded Nanoscale Zero-Valent Iron for ReO4-/TcO4- Sequestration – Separation and Purification Technology (2024)
📄 Deciphering the Facet-Dependent Scavenging Potential of α-Fe2O3 Nanocrystals – Applied Surface Science (2024)
📄 Crucial Size Effect on Dicarbonylation of Acetylene Over Pd/CsHPMo Catalysts – Dalton Transactions (2024)
📄 Targeting Phosphodiesterase 4 as a Therapeutic Strategy for Cognitive Improvement – Bioorganic Chemistry (2023)
📄 Vesicular BiVO4 Nanostructures Modified by g-C3N4 Quantum Dots – Materials Science in Semiconductor Processing (2024)
📄 Synergistic Effect of Hematite Facet and Pd Nanocluster for Acetylene Dicarbonylation – Molecular Catalysis (2021)
📄 Strong Metal-Support Interactions Between Palladium Nanoclusters and Hematite – New Journal of Chemistry (2020)
📄 Highly Efficient Selective Dicarbonylation of Acetylene Catalyzed by Palladium Nanosheets – New Journal of Chemistry (2020)
📄 Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous – Progress in Chemistry (2020)
📄 Advances in Research on Structure-Activity Relationship in Hydrogenation Catalysts – Chemical Industry and Engineering Progress (2020)
📄 Support Morphology-Dependent Catalytic Activity of Co/CeO2 for Phenol Hydrogenation – New Journal of Chemistry (2020)

CONCLUSION

Dr. Xuemei Wei is a leading researcher in catalysis and nanomaterials, making significant strides in environmental and sustainable chemistry. Her contributions to metal-organic chemistry and catalytic performance have earned her recognition in top scientific journals. As an Assistant Researcher at Shaoxing University, she continues to develop innovative solutions for industrial and environmental challenges. 🚀🔬

Mohammed Mahmoud M. Attia – Materials Science and Engineering – Excellence in Innovation

Mohammed Mahmoud M. Attia - Materials Science and Engineering - Excellence in Innovation

Suez university - Egypt

AUTHOR PROFILE

GOOGLE SCHOLAR

Based on the provided information about Mohammed Mahmoud M. Attia, he appears to be a suitable candidate for the Research for Community Impact Award. His extensive academic and professional background, combined with his contributions to sustainable construction and innovative materials, aligns well with the award's criteria.

EDUCATION

Mohammed Mahmoud M. Attia earned his Ph.D. in Civil Construction from Suez University, Egypt, in October 2018. His thesis, titled "Behavior of Post-Tension Prestressed Lightweight Fiber Reinforced Concrete Beams," was supervised by Prof. Dr. Aymen Hussien Hosny Khalil. He also holds a Master’s degree from the same institution, granted in September 2013, with a thesis on producing lightweight self-cured concrete using local materials. His Bachelor’s degree in Civil Construction was obtained from Suez Canal University in May 2007.

TEACHING EXPERIENCE

Dr. Attia has extensive teaching experience, having taught various courses at different academic levels. These include Technical Reports (Arabic and English), Technical Drawing, Properties and Strength of Materials, Theory of Structures, Architectural Drawing, Surveying, Building Technology, Reinforced Concrete Design, and several others. His teaching spans from first-year undergraduate courses to advanced topics in civil engineering.

PROFESSIONAL EXPERIENCE

Dr. Attia currently serves as an Assistant Professor in the Civil Construction Department at Suez University, a position he has held since June 2021. Prior to this, he was a lecturer and assistant lecturer in the same department. He has also been actively involved in consultancy projects for Suez University and has significant experience in quality control and accreditation processes for educational programs and laboratories.

RESEARCH SUPERVISION

Dr. Attia has supervised multiple M.Sc. and Ph.D. researchers on topics such as textile composite materials as alternatives to rebar, eco-friendly concrete nanomaterials for radiation shielding, and the flexural behavior of RC beams strengthened with hybrid steel-FRP bars. These research projects indicate his commitment to advancing knowledge in sustainable and innovative construction materials.

SOFTWARE PROFICIENCY

Dr. Attia is proficient in various software programs essential for civil engineering and structural analysis, including Ansys, SAP 2000, AutoCAD, MATLAB, CSI ETABS, CSI SAFE, Revit Structure, and Microsoft Word.

PROFESSIONAL SERVICE AND LEADERSHIP

Dr. Attia has held several key positions and participated in numerous workshops and tutorials related to his field. He has been a reviewer for prestigious journals such as the American Journal of Construction and Building Materials, Springer Nature Journal, and Advances in Concrete Construction. He has also coordinated multiple accreditation and quality assurance programs, as well as seminars on sustainable development and green energy.

MEDIA ENGAGEMENT AND OUTREACH

Dr. Attia has actively engaged with the media to discuss important topics such as climate change, technological education, and artificial intelligence. His appearances on Egyptian TV channels highlight his ability to communicate complex scientific ideas to a broader audience, thereby increasing public awareness and understanding.

PUBLICATIONS

Dr. Attia has contributed to the field of civil engineering through various publications. His research on sustainable materials, such as the use of sugarcane bagasse ash and nano eggshell powder in high-strength concrete, and the development of eco-friendly radiation shielding composites using metal-nail waste and steel slag aggregate, demonstrates his focus on innovative and environmentally friendly construction solutions.

CONCLUSION

Dr. Mohammed Mahmoud M. Attia’s extensive academic background, teaching experience, professional service, and research contributions make him a highly suitable candidate for the Research for Community Impact Award. His work in sustainable construction and innovative materials has a significant positive impact on the community, aligning perfectly with the objectives of this award.

NOTABLE PUBLICATION

Effects of sugarcane bagasse ash and nano eggshell powder on high-strength concrete properties 2022 (50)

Metal-nails waste and steel slag aggregate as alternative and eco-friendly radiation shielding composites 2022 (27)

Behavior of FRP rods under uniaxial tensile strength with multiple materials as an alternative to steel rebar 2022 (19)

Performance of RC beams with novelty GFRP under the bending load: An experimental and FE study 2023 (2)

Tests and finite element modeling of concrete beams reinforced with reused steel bars 2024

BANTAMLAK BIRLIE – Materials Science and Engineering – Best Researcher Award

BANTAMLAK BIRLIE - Materials Science and Engineering - Best Researcher Award

Bahir Dar University - Ethiopia

AUTHOR PROFILE

Google Scholar

BANTAMLAK BIRLIE: A JOURNEY OF EXCELLENCE IN TEXTILE ENGINEERING AND INNOVATION 🌟

My educational journey has been a pursuit of mastery in Bachelor of Science in Textile Engineering and Manufacturing. Armed with a Master of Science in Textile Manufacturing and Material Science and Engineering, alongside a Bachelor of Science in Textile Engineering, I've delved deep into the intricacies of the field. For the past seven years, I've had the privilege of sharing my knowledge and insights as a lecturer and researcher at Bahir Dar University Ethiopian Institute of Textile and Fashion Technology. This experience has not only enriched my understanding of the discipline but also fueled my passion for exploration and innovation within the textile industry. Through rigorous academic pursuits and hands-on research, I have garnered a robust skill set and a keen eye for emerging trends and technologies.

ACADEMIC ACHIEVEMENTS AND COMMITMENT TO EXCELLENCE 📚

My academic achievements stand as milestones in my journey, reflecting my commitment to excellence and my aspiration to contribute meaningfully to the advancement of extraction and characterization of natural cellulosic fibers for green composite manufacturing applications due to its biodegradability and eco-friendly nature. As I look ahead, I am excited to continue pushing boundaries, fostering collaboration, and driving positive change in the ever-evolving landscape of textiles. My contributions to research and development, innovation, and extension have been multifaceted and impactful.

EXPERTISE IN SUSTAINABLE MATERIALS 🌿

One significant aspect of my work has been in the realm of sustainable materials, where I have dedicated myself to extracting and characterizing natural cellulosic fibers for green composite applications. This endeavor not only advances the field of materials science but also promotes environmentally friendly alternatives in various industrial applications. Additionally, my research has shed light on eco-friendly approaches for textile waste effluent treatment, addressing a critical issue in the textile industry and advocating for sustainable practices.

INNOVATIONS IN BIOBASED FLAME RETARDANCY 🔥

Furthermore, my exploration into biobased flame retardancy of textile polymeric materials has offered novel solutions for enhancing safety without compromising on eco-friendliness. These innovations stand as a testament to my dedication to pushing the boundaries of what is possible in the textile industry, ensuring that advancements are both cutting-edge and sustainable.

DEDICATION TO KNOWLEDGE DISSEMINATION 🧑‍🏫

Beyond research, I have actively engaged in knowledge dissemination by delivering lectures to graduate students, fostering a culture of learning and innovation. Through these efforts, I strive to not only contribute to the academic community but also inspire others to embrace sustainable practices and drive positive change in their respective fields.

PASSION FOR ENVIRONMENTAL SUSTAINABILITY 🌍

Through rigorous academic pursuits and hands-on research, I have garnered a robust skill set and a keen eye for emerging trends and technologies. My work emphasizes the importance of environmental sustainability, advocating for practices that protect and preserve our planet for future generations. This passion for sustainability permeates every aspect of my professional endeavors, from research to teaching.

VISION FOR THE FUTURE OF TEXTILES 🚀

As I look ahead, I am excited to continue pushing boundaries, fostering collaboration, and driving positive change in the ever-evolving landscape of textiles. My vision for the future includes continued contributions to research and development, particularly in sustainable materials and eco-friendly practices, ensuring that the textile industry evolves in a manner that is both innovative and responsible.

NOTABLE PUBLICATION

Textile effluent treatment methods and eco-friendly resolution of textile wastewater 2022 (110)

Nanotechnologies past, present and future applications in enhancing functionality of medical textiles: a review 2024

Textile Wastewater Treatment Using Polypyrrole/Polyphenol Oxidase Membranes 2024

Extraction and Characterization of Bast Fiber from Xanthium Oriental plant 2023

Textile effluent treatment methods and eco-friendly resolution of textile wastewater 2022