Xuemei Wei | Materials Science and Engineering | Best Paper Award

Dr Xuemei Wei | Materials Science and Engineering | Best Paper Award


Assistant Researcher, Shaoxing University, China

Dr. Xuemei Wei is an accomplished researcher specializing in metal-organic chemistry and catalysis. She holds a Ph.D. in Physical Chemistry from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. Her expertise lies in the development of nano-catalytic materials for environmental and energy applications. With over 12 SCI publications in high-impact journals, she has made significant contributions to catalyst design and chemical transformations. Currently, she serves as an Assistant Researcher at Shaoxing University, where she advances research in pharmaceutical and chemical sciences. Her work integrates innovative nanomaterials to address environmental challenges and sustainable energy solutions.

PROFESSIONAL PROFILE

Scopus

EDUCATION

πŸŽ“ Ph.D. in Physical Chemistry – Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (2018-2021)
πŸ“ Thesis: Design and Mechanism of Efficient Carbonylation Catalysts under Ambient Conditions.
πŸŽ“ M.Sc. in Inorganic Chemistry – Inner Mongolia University (2013-2016)
πŸŽ“ B.Sc. in Chemistry – Jilin Normal University (2009-2013)

PROFESSIONAL EXPERIENCE

πŸ”¬ Assistant Researcher – Shaoxing University, College of Chemistry and Chemical Engineering (2021-Present)
πŸ” Focus: Development of nano-catalytic materials for industrial and environmental applications.
πŸ§ͺ R&D Specialist – Changchun Zhongke Haorong New Materials Research Co., Ltd. (2016-2018)
πŸš€ Developed and optimized catalytic materials for large-scale industrial use.

AWARDS & HONORS

πŸ† Recognized for research contributions in metal-organic chemistry.
πŸ“œ Multiple SCI-indexed publications in top-tier journals.
🌍 Acknowledged for innovative approaches in environmental catalysis.

RESEARCH FOCUS

πŸ§ͺ Catalysis Under Ambient Conditions: Development of carbonylation catalysts for industrial applications.
🌱 Environmental Nanomaterials: Engineering nanomaterials for pollutant degradation and remediation.
⚑ Sustainable Energy Catalysis: Exploring hydrodeoxygenation reactions for green chemistry solutions.

PUBLICATION TOP NOTES

πŸ“„ Turning on Ambient Conditions Hydrodeoxygenation of Biobased Aromatic Alcohols – Energy Conversion and Management (2025)
πŸ“„ Construction of MXene-loaded Nanoscale Zero-Valent Iron for ReO4-/TcO4- Sequestration – Separation and Purification Technology (2024)
πŸ“„ Deciphering the Facet-Dependent Scavenging Potential of Ξ±-Fe2O3 Nanocrystals – Applied Surface Science (2024)
πŸ“„ Crucial Size Effect on Dicarbonylation of Acetylene Over Pd/CsHPMo Catalysts – Dalton Transactions (2024)
πŸ“„ Targeting Phosphodiesterase 4 as a Therapeutic Strategy for Cognitive Improvement – Bioorganic Chemistry (2023)
πŸ“„ Vesicular BiVO4 Nanostructures Modified by g-C3N4 Quantum Dots – Materials Science in Semiconductor Processing (2024)
πŸ“„ Synergistic Effect of Hematite Facet and Pd Nanocluster for Acetylene Dicarbonylation – Molecular Catalysis (2021)
πŸ“„ Strong Metal-Support Interactions Between Palladium Nanoclusters and Hematite – New Journal of Chemistry (2020)
πŸ“„ Highly Efficient Selective Dicarbonylation of Acetylene Catalyzed by Palladium Nanosheets – New Journal of Chemistry (2020)
πŸ“„ Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous – Progress in Chemistry (2020)
πŸ“„ Advances in Research on Structure-Activity Relationship in Hydrogenation Catalysts – Chemical Industry and Engineering Progress (2020)
πŸ“„ Support Morphology-Dependent Catalytic Activity of Co/CeO2 for Phenol Hydrogenation – New Journal of Chemistry (2020)

CONCLUSION

Dr. Xuemei Wei is a leading researcher in catalysis and nanomaterials, making significant strides in environmental and sustainable chemistry. Her contributions to metal-organic chemistry and catalytic performance have earned her recognition in top scientific journals. As an Assistant Researcher at Shaoxing University, she continues to develop innovative solutions for industrial and environmental challenges. πŸš€πŸ”¬

Mohammed Mahmoud M. Attia – Materials Science and Engineering – Excellence in Innovation

Mohammed Mahmoud M. Attia - Materials Science and Engineering - Excellence in Innovation

Suez university - Egypt

AUTHOR PROFILE

GOOGLE SCHOLAR

Based on the provided information about Mohammed Mahmoud M. Attia, he appears to be a suitable candidate for the Research for Community Impact Award. His extensive academic and professional background, combined with his contributions to sustainable construction and innovative materials, aligns well with the award's criteria.

EDUCATION

Mohammed Mahmoud M. Attia earned his Ph.D. in Civil Construction from Suez University, Egypt, in October 2018. His thesis, titled "Behavior of Post-Tension Prestressed Lightweight Fiber Reinforced Concrete Beams," was supervised by Prof. Dr. Aymen Hussien Hosny Khalil. He also holds a Master’s degree from the same institution, granted in September 2013, with a thesis on producing lightweight self-cured concrete using local materials. His Bachelor’s degree in Civil Construction was obtained from Suez Canal University in May 2007.

TEACHING EXPERIENCE

Dr. Attia has extensive teaching experience, having taught various courses at different academic levels. These include Technical Reports (Arabic and English), Technical Drawing, Properties and Strength of Materials, Theory of Structures, Architectural Drawing, Surveying, Building Technology, Reinforced Concrete Design, and several others. His teaching spans from first-year undergraduate courses to advanced topics in civil engineering.

PROFESSIONAL EXPERIENCE

Dr. Attia currently serves as an Assistant Professor in the Civil Construction Department at Suez University, a position he has held since June 2021. Prior to this, he was a lecturer and assistant lecturer in the same department. He has also been actively involved in consultancy projects for Suez University and has significant experience in quality control and accreditation processes for educational programs and laboratories.

RESEARCH SUPERVISION

Dr. Attia has supervised multiple M.Sc. and Ph.D. researchers on topics such as textile composite materials as alternatives to rebar, eco-friendly concrete nanomaterials for radiation shielding, and the flexural behavior of RC beams strengthened with hybrid steel-FRP bars. These research projects indicate his commitment to advancing knowledge in sustainable and innovative construction materials.

SOFTWARE PROFICIENCY

Dr. Attia is proficient in various software programs essential for civil engineering and structural analysis, including Ansys, SAP 2000, AutoCAD, MATLAB, CSI ETABS, CSI SAFE, Revit Structure, and Microsoft Word.

PROFESSIONAL SERVICE AND LEADERSHIP

Dr. Attia has held several key positions and participated in numerous workshops and tutorials related to his field. He has been a reviewer for prestigious journals such as the American Journal of Construction and Building Materials, Springer Nature Journal, and Advances in Concrete Construction. He has also coordinated multiple accreditation and quality assurance programs, as well as seminars on sustainable development and green energy.

MEDIA ENGAGEMENT AND OUTREACH

Dr. Attia has actively engaged with the media to discuss important topics such as climate change, technological education, and artificial intelligence. His appearances on Egyptian TV channels highlight his ability to communicate complex scientific ideas to a broader audience, thereby increasing public awareness and understanding.

PUBLICATIONS

Dr. Attia has contributed to the field of civil engineering through various publications. His research on sustainable materials, such as the use of sugarcane bagasse ash and nano eggshell powder in high-strength concrete, and the development of eco-friendly radiation shielding composites using metal-nail waste and steel slag aggregate, demonstrates his focus on innovative and environmentally friendly construction solutions.

CONCLUSION

Dr. Mohammed Mahmoud M. Attia’s extensive academic background, teaching experience, professional service, and research contributions make him a highly suitable candidate for the Research for Community Impact Award. His work in sustainable construction and innovative materials has a significant positive impact on the community, aligning perfectly with the objectives of this award.

NOTABLE PUBLICATION

Effects of sugarcane bagasse ash and nano eggshell powder on high-strength concrete properties 2022 (50)

Metal-nails waste and steel slag aggregate as alternative and eco-friendly radiation shielding composites 2022 (27)

Behavior of FRP rods under uniaxial tensile strength with multiple materials as an alternative to steel rebar 2022 (19)

Performance of RC beams with novelty GFRP under the bending load: An experimental and FE study 2023 (2)

Tests and finite element modeling of concrete beams reinforced with reused steel bars 2024

BANTAMLAK BIRLIE – Materials Science and Engineering – Best Researcher Award

BANTAMLAK BIRLIE - Materials Science and Engineering - Best Researcher Award

Bahir Dar University - Ethiopia

AUTHOR PROFILE

Google Scholar

BANTAMLAK BIRLIE: A JOURNEY OF EXCELLENCE IN TEXTILE ENGINEERING AND INNOVATION 🌟

My educational journey has been a pursuit of mastery in Bachelor of Science in Textile Engineering and Manufacturing. Armed with a Master of Science in Textile Manufacturing and Material Science and Engineering, alongside a Bachelor of Science in Textile Engineering, I've delved deep into the intricacies of the field. For the past seven years, I've had the privilege of sharing my knowledge and insights as a lecturer and researcher at Bahir Dar University Ethiopian Institute of Textile and Fashion Technology. This experience has not only enriched my understanding of the discipline but also fueled my passion for exploration and innovation within the textile industry. Through rigorous academic pursuits and hands-on research, I have garnered a robust skill set and a keen eye for emerging trends and technologies.

ACADEMIC ACHIEVEMENTS AND COMMITMENT TO EXCELLENCE πŸ“š

My academic achievements stand as milestones in my journey, reflecting my commitment to excellence and my aspiration to contribute meaningfully to the advancement of extraction and characterization of natural cellulosic fibers for green composite manufacturing applications due to its biodegradability and eco-friendly nature. As I look ahead, I am excited to continue pushing boundaries, fostering collaboration, and driving positive change in the ever-evolving landscape of textiles. My contributions to research and development, innovation, and extension have been multifaceted and impactful.

EXPERTISE IN SUSTAINABLE MATERIALS 🌿

One significant aspect of my work has been in the realm of sustainable materials, where I have dedicated myself to extracting and characterizing natural cellulosic fibers for green composite applications. This endeavor not only advances the field of materials science but also promotes environmentally friendly alternatives in various industrial applications. Additionally, my research has shed light on eco-friendly approaches for textile waste effluent treatment, addressing a critical issue in the textile industry and advocating for sustainable practices.

INNOVATIONS IN BIOBASED FLAME RETARDANCY πŸ”₯

Furthermore, my exploration into biobased flame retardancy of textile polymeric materials has offered novel solutions for enhancing safety without compromising on eco-friendliness. These innovations stand as a testament to my dedication to pushing the boundaries of what is possible in the textile industry, ensuring that advancements are both cutting-edge and sustainable.

DEDICATION TO KNOWLEDGE DISSEMINATION πŸ§‘β€πŸ«

Beyond research, I have actively engaged in knowledge dissemination by delivering lectures to graduate students, fostering a culture of learning and innovation. Through these efforts, I strive to not only contribute to the academic community but also inspire others to embrace sustainable practices and drive positive change in their respective fields.

PASSION FOR ENVIRONMENTAL SUSTAINABILITY 🌍

Through rigorous academic pursuits and hands-on research, I have garnered a robust skill set and a keen eye for emerging trends and technologies. My work emphasizes the importance of environmental sustainability, advocating for practices that protect and preserve our planet for future generations. This passion for sustainability permeates every aspect of my professional endeavors, from research to teaching.

VISION FOR THE FUTURE OF TEXTILES πŸš€

As I look ahead, I am excited to continue pushing boundaries, fostering collaboration, and driving positive change in the ever-evolving landscape of textiles. My vision for the future includes continued contributions to research and development, particularly in sustainable materials and eco-friendly practices, ensuring that the textile industry evolves in a manner that is both innovative and responsible.

NOTABLE PUBLICATION

Textile effluent treatment methods and eco-friendly resolution of textile wastewater 2022 (110)

Nanotechnologies past, present and future applications in enhancing functionality of medical textiles: a review 2024

Textile Wastewater Treatment Using Polypyrrole/Polyphenol Oxidase Membranes 2024

Extraction and Characterization of Bast Fiber from Xanthium Oriental plant 2023

Textile effluent treatment methods and eco-friendly resolution of textile wastewater 2022