Fei Mao | Materials Science and | Best Researcher Award

ProfDr. Fei Mao | Materials Science and Engineering | Best Researcher Award

Researcher at Jiangsu University Affiliated People’s Hospital, China

Prof. Fei Mao is a highly accomplished biomedical researcher specializing in mesenchymal stem cells, exosomes, and their therapeutic applications in inflammatory bowel disease (IBD) and colorectal cancer. With over two decades of academic experience and a strong publication record spanning high-impact journals, his research demonstrates significant depth and innovation. His work has advanced understanding of molecular mechanisms such as miRNA regulation, pyroptosis, and gut microbiota interactions, highlighting its translational relevance. Prof. Mao’s international exposure, including a postdoctoral fellowship at MD Anderson Cancer Center, adds further value to his global scientific perspective. While expanding research breadth, increasing sole authorship in top-tier journals, and detailing grant and citation metrics could strengthen his profile, his consistent focus and leadership in this niche field make him a strong candidate for the Best Researcher Award. His contributions have had a meaningful impact on regenerative medicine and the potential treatment of chronic gastrointestinal diseases.

Professional Profile

Education🎓

Prof. Fei Mao has a strong academic foundation rooted in medical and pharmaceutical sciences. He began his academic journey with a Bachelor’s degree in Medical Examination from the School of Medicine at Jiangsu University (1997–2002), followed by a Master’s degree in Pharmacognostics at the College of Food Science and Technology, also at Jiangsu University (2002–2005). He further advanced his expertise by earning a Ph.D. in Medicine from the School of Medicine, Jiangsu University (2004–2010), where he developed a strong focus on biomedical research. To broaden his research experience and global exposure, he completed a postdoctoral fellowship at the prestigious MD Anderson Cancer Center, University of Texas, USA (2012–2014), one of the world’s leading cancer research institutions. Since 2018, Prof. Mao has been serving as a Professor at the School of Medicine, Jiangsu University, where he continues to lead research initiatives and mentor the next generation of medical scientists.

Professional Experience📝

Prof. Fei Mao has built a distinguished professional career in biomedical research and academia. He began his postdoctoral training at the renowned MD Anderson Cancer Center, University of Texas, USA (2012–2014), where he deepened his expertise in cancer biology and regenerative medicine. Upon returning to China, he joined the School of Medicine at Jiangsu University, where he has served as a Professor since 2018. In this role, he has led numerous research projects focused on mesenchymal stem cells, exosomes, and their therapeutic applications in inflammatory bowel disease and colorectal cancer. His professional work is characterized by a strong translational focus, aiming to bridge the gap between laboratory findings and clinical treatments. Prof. Mao has published extensively in peer-reviewed journals, contributed to scientific reviews and book chapters, and collaborated with international researchers. His leadership in academic research and dedication to innovation have earned him recognition as a key figure in his field.

Research Interest🔎

Prof. Fei Mao’s research interests lie at the intersection of regenerative medicine, immunology, and gastrointestinal diseases. His primary focus is on the therapeutic potential of mesenchymal stem cells (MSCs) and exosomes in treating inflammatory bowel disease (IBD) and related colorectal cancer. He is particularly interested in understanding the molecular and cellular mechanisms through which MSCs and their exosomes modulate immune responses, regulate macrophage function, and influence pathways such as ubiquitination, pyroptosis, ferroptosis, and the gut microbiota-metabolome axis. By exploring the roles of microRNAs, long non-coding RNAs, and key signaling pathways like JAK/STAT and ERK, his research aims to uncover novel therapeutic targets and improve treatment strategies for chronic inflammatory conditions. Prof. Mao’s work bridges basic science and clinical application, contributing to the development of next-generation cell-based therapies. His dedication to this niche field positions him as a leading researcher in stem cell therapy and gastrointestinal disease intervention.

Award and Honor🏆

While specific awards and honors are not explicitly listed in the provided profile, Prof. Fei Mao’s academic achievements and research contributions strongly suggest a career marked by professional recognition. His appointment as a Professor at Jiangsu University since 2018 reflects institutional trust and recognition of his expertise. His postdoctoral fellowship at the prestigious MD Anderson Cancer Center, University of Texas, indicates international recognition of his potential and scientific capability. Additionally, his extensive publication record in reputable international journals highlights his research impact and standing within the scientific community. His collaborative work with global researchers and leadership in innovative studies on stem cell therapies for inflammatory bowel disease further underline his influence in the field. It is likely that Prof. Mao has received internal university commendations, research grants, and possibly national or regional awards in China, which would be consistent with the level of academic productivity and impact demonstrated throughout his career.

Research Skill🔬

Prof. Fei Mao possesses a comprehensive and advanced set of research skills in the fields of regenerative medicine, molecular biology, and immunology. His expertise lies in the isolation and therapeutic application of mesenchymal stem cells (MSCs) and exosomes, particularly in the treatment of inflammatory bowel disease (IBD) and colorectal cancer. He is highly skilled in designing and conducting in vivo and in vitro experiments, utilizing mouse models to study disease mechanisms and therapeutic outcomes. Prof. Mao has extensive experience in molecular techniques such as gene expression analysis, microRNA profiling, western blotting, immunohistochemistry, and pathway analysis involving signaling molecules like NF-κB, JAK/STAT, and ERK. He also has strong capabilities in gut microbiota and metabolomic research, integrating omics technologies to understand host-microbe interactions. His ability to translate complex molecular findings into therapeutic insights demonstrates not only technical proficiency but also a deep understanding of biomedical research with clinical relevance.

Conclusion💡

Prof. Fei Mao is a highly suitable candidate for a Best Researcher Award, particularly in the biomedical and translational medicine fields. His focused research on mesenchymal stem cells and inflammatory diseases has made valuable contributions to both basic science and potential clinical applications.

While some diversification and additional metrics (citations, grants) would further validate his standing, his sustained publication output, innovative methodologies, and international experience strongly support the merit of this nomination.

Publications Top Noted✍

  1. Title: Advancing therapeutic strategies for graft-versus-host disease by targeting gut microbiome dynamics in allogeneic hematopoietic stem cell transplantation: current evidence and future directions
    Authors: Not provided
    Year: Not provided
    Citations: 0

  2. Title: Human umbilical cord mesenchymal stem cell-derived exosomes repair IBD by activating the SIRT1-FXR pathway in macrophages
    Authors: Not provided
    Year: 2025
    Citations: 0

  3. Title: The role of COX-2 and its use as a therapeutic target in IBD and related colorectal cancer
    Authors: Not provided
    Year: Not provided
    Citations: 0

  1. Title: Mesenchymal stem cell in immunomodulation of dendritic cells: Implications for inflammatory bowel disease therapy
    Authors: Not provided
    Year: Not provided
    Citations: 0

  2. Title: HucMSC-Ex alleviates inflammatory bowel disease by regulating O-GlcNAcylation modification of RACK1 in intestinal epithelial cells
    Authors: Not provided
    Year: 2025
    Citations: 0

  1. Title: Flos lonicerae polysaccharide alleviates inflammatory bowel disease by improving intestinal microbiota and inhibiting oxidative stress and the NF-κB pathway
    Authors: Not provided
    Year: 2025
    Citations: 0

  1. Title: Emerging role of small RNAs in inflammatory bowel disease and associated colorectal cancer (Review)
    Authors: Not provided
    Year: Not provided
    Citations: 2

  1. Title: The role of suppressor of cytokine signaling 3 in inflammatory bowel disease and its associated colorectal cancer
    Authors: Not provided
    Year: Not provided
    Citations: 0

  1. Title: Intestinal mucus barrier: A potential therapeutic target for IBD
    Authors: Not provided
    Year: Not provided
    Citations: 5

  2. Title: Mechanism of cell death and its application in the repair of inflammatory bowel disease by mesenchymal stem cells
    Authors: Not provided
    Year: Not provided
    Citations: Not provided

Ms.Elke Wuyts| Materials Science | Best Researcher Award

Ms.Elke Wuyts| Materials Science | Best Researcher Award

Mehrshad Asghari at School of Mining Engineering, University college of Engineering, University of Tehran, Iran

Elke Wuyts is an accomplished researcher and educator in the field of [specific field, e.g., environmental science, ecology], known for her dedication to [specific areas of focus, e.g., sustainability, conservation]. With a strong academic background and practical experience, she is committed to addressing pressing environmental challenges through innovative research and community engagement. Elke’s work has positively impacted [mention relevant sectors, e.g., environmental policy, conservation strategies].

Profile:

Scopus Profile

Strengths for the Award:

  • Robust Academic Background:
    • The individual holds a Ph.D. in Design from the Illinois Institute of Technology, which indicates a strong theoretical foundation in design and innovation.
    • Additional degrees (M.Pd and B.S.) in relevant fields highlight a well-rounded educational background.
  • Extensive Teaching Experience:
    • The candidate has held numerous academic positions, including Chair Professor and Dean at Asia University, and has been a Distinguished Professor at National Cheng Kung University.
    • Their diverse teaching roles at various prestigious institutions show a commitment to education and mentorship in design and innovation.
  • Leadership Roles:
    • Serving in leadership positions, such as Chair of the Department of Industrial Design and Director of the Institute of Creative Industry Design, demonstrates strong management skills and the ability to influence academic programs and curricula.
  • Research Specialization:
    • Specializations in innovation planning, cultural and creative industries, and industrial design indicate a focus on areas that can significantly impact communities through design-led initiatives.
    • Their involvement in event planning and audience research aligns with community engagement and outreach efforts.

Areas for Improvement:

  • Publications and Research Output:
    • While the individual has extensive experience, showcasing a more substantial portfolio of published research could strengthen their application for the Best Researcher Award.
    • Engaging in collaborative research projects focused on community issues may enhance visibility and impact.
  • Community Engagement Initiatives:
    • Actively participating in or leading community-focused projects or workshops could demonstrate a direct impact on the community, making a stronger case for the Community Impact Award.
    • Developing initiatives that involve students and local stakeholders can foster community engagement.
  • Grant Acquisition:
    • Pursuing research grants aimed at community-based projects can enhance their profile for both awards by demonstrating their ability to secure funding for impactful initiatives.

Education:

  • Elke Wuyts earned her Bachelor’s degree in [specific field, e.g., Biology, Environmental Science, or a related discipline] from [University Name], where she developed a strong foundation in [mention core subjects, e.g., ecology, microbiology, or conservation]. She then pursued her Master’s degree at [University Name], specializing in [specific area of study, e.g., sustainable development, environmental management]. Her academic endeavors culminated in a PhD in [specific field] from [University Name], focusing on [specific research focus or dissertation topic], equipping her with advanced knowledge and research skills in her area of expertise.

Experience:

  • Elke has over [number] years of experience in [specific field or industry, e.g., environmental science, research, or academia]. She currently serves as [current position, e.g., Research Scientist, Lecturer] at [Institution/Company Name], where she leads projects on [mention specific responsibilities or research areas, e.g., ecological conservation, climate change]. Prior to this role, she held positions at [mention previous companies or institutions], where she contributed to significant initiatives in [mention relevant areas, e.g., environmental policy, biodiversity studies].

Skills:

  • Elke possesses a diverse skill set, including expertise in [mention specific skills, e.g., data analysis, field research, environmental modeling]. She is proficient in using [specific software or tools, e.g., GIS, R, or statistical analysis software], and her strong communication skills enable her to effectively convey complex scientific concepts to diverse audiences. Her collaborative abilities are complemented by her project management experience.

Research Focus:

  • Elke’s research primarily focuses on [mention key areas, e.g., ecological conservation, climate change adaptation, biodiversity]. She aims to tackle challenges related to [specific issues, e.g., habitat loss, environmental degradation], and her work seeks to develop evidence-based strategies for promoting sustainability and resilience in ecosystems. Through her research, Elke aspires to make meaningful contributions to the understanding and protection of our natural environment.

Publications 

Conclusion:

  • In conclusion, this candidate is well-suited for both the Research for Community Impact Award and the Best Researcher Award due to their extensive academic qualifications, leadership experience, and research specialization. To strengthen their candidacy further, they could focus on increasing their publication output, enhancing community engagement efforts, and pursuing research grants. With their current trajectory and contributions, they have the potential to make a significant impact in their field and the communities they serve.

Mehrshad Asghari | Materials Science | Best Researcher Award

Dr. Mehrshad Asghari | Materials Science | Best Researcher Award

Mehrshad Asghari at School of Mining Engineering, University college of Engineering, University of Tehran, Iran

Dr. Mehrshad Asghari is a seasoned Senior Mineral Processing Engineer with over a decade of experience in optimizing iron and copper ore processing. Specializing in magnetic separation, gravity, and flotation tests, he has led innovative projects in mineral processing circuits. As head of the mineral processing department in Tehran, he excels in the design, modeling, and simulation of processing equipment, employing advanced techniques such as Discrete Element Method (DEM) and Finite Element Method (FEM). Dr. Asghari is currently pursuing a PhD in Mineral Processing Engineering at Tehran University, where he combines academic rigor with practical applications to enhance ore recovery and sustainability. With seven ISI articles and numerous conference papers, his research significantly contributes to the field.

Profile:

Scopus Profile

Strengths for the Award:

  1. Expertise in Mineral Processing: The individual has a strong background in mineral processing, with specific expertise in magnetic separation, gravity, and flotation tests for iron and copper ores. This technical depth is crucial for research excellence.
  2. Advanced Academic Credentials: Currently pursuing a PhD in mineral processing engineering, they demonstrate commitment to continuous learning and research.
  3. Proven Research Contributions: With seven ISI articles and four conference papers, their active engagement in publishing research shows a significant contribution to the field. The topics cover both theoretical and practical aspects of mineral processing, indicating a balanced approach.
  4. Innovative Use of Technology: Specialization in Discrete Element Method (DEM) and Finite Element Method (FEM) showcases their ability to leverage advanced modeling techniques to improve processing efficiency, as evident from their recent publications.
  5. Comprehensive Experience: Having held leadership roles (Head of Laboratory and Head of Department) for over a decade, they have extensive practical experience in all stages of mineral processing engineering, from design to optimization.
  6. Collaborative Work: Their collaborations with other researchers and institutions demonstrate teamwork and an ability to integrate diverse perspectives into their work.
  7. Professional Certifications: Being a course trainer indicates their dedication to education and knowledge dissemination, which is valuable for fostering future researchers.

Areas for Improvement:

  1. Broader Impact: While the technical contributions are significant, focusing on how their research impacts industry practices or environmental sustainability could enhance their recognition.
  2. Networking: Increased participation in international conferences and collaborations could broaden their visibility and influence in the field.
  3. Public Engagement: Engaging with non-academic audiences through workshops or community outreach can help translate research findings into practical applications, further elevating their profile.
  4. Diversification of Research Topics: Exploring interdisciplinary research that combines mineral processing with other fields, such as environmental science or materials engineering, could lead to innovative solutions and broaden the scope of their work.

Education:

Dr. Mehrshad Asghari is pursuing a PhD in Mineral Processing Engineering at Tehran University, expected to complete in 2024. His academic journey underscores a deep commitment to advancing knowledge in the field of mineral processing. He has previously acquired a Master’s degree in the same discipline, equipping him with a solid foundation in both theoretical and practical aspects. His ongoing research focuses on optimizing processing techniques for iron and copper ores, with a particular interest in utilizing Discrete Element Method (DEM) and Finite Element Method (FEM) for simulation and modeling. Dr. Asghari’s educational background is complemented by certifications in specialized mining software and as a course trainer in mineral processing, showcasing his dedication to continuous learning and knowledge dissemination within the mining and minerals sector.

Experience:

Dr. Mehrshad Asghari has held prominent positions in the field of mineral processing since 2011. He began his career as the Head of the Mineral Processing Laboratory in Tehran, where he conducted essential tests in magnetic separation, gravity, and flotation to optimize plant designs. In 2013, he was promoted to Head of the Mineral Processing Department, where he oversaw comprehensive modeling, simulation, and design documentation for various mineral processing plants. His experience spans all stages of mineral processing engineering, from laboratory experiments to industrial plant operations. Dr. Asghari’s leadership and technical expertise have facilitated significant advancements in processing efficiency and ore recovery. His commitment to innovation is evident in his application of advanced modeling techniques and continuous optimization efforts in mineral processing practices.

Research Focus:

Dr. Mehrshad Asghari’s research focus centers on enhancing the efficiency of mineral processing techniques, particularly for iron and copper ores. His work leverages advanced simulation methods, including Discrete Element Method (DEM) and Finite Element Method (FEM), to analyze and improve processing circuits. Recent studies include optimizing roller screen efficiency for green iron pellets and investigating the elastoplastic behavior of these materials during classification. Dr. Asghari is also dedicated to understanding the relationship between operational parameters and product shape properties in industrial milling. His contributions address critical issues in flotation kinetics, with research aimed at improving copper recovery in industrial circuits. By exploring innovative processing methods, he aims to contribute to sustainable mining practices and environmental protection. Through his publications and ongoing research, Dr. Asghari seeks to bridge the gap between theory and practice in mineral processing engineering.

Publications Top Notes:

  1. Improving the roller screen efficiency to classify green iron pellets using DEM simulation, novel roll design and implementing banana configuration 📈
  2. Implementation of DEM to calibrate contact parameters, as a novel simulation of the elastoplastic behavior of green iron pellet classified by roller screen 📊
  3. Investigation of cigarette effect and elastic-plastic behavior of green iron pellets on the roller screen efficiency 🔍
  4. Relationship among operational parameters, ore characteristics, and product shape properties in an industrial SAG mill ⚙️
  5. Analysis of kinetic models for chalcopyrite flotation: effect of operating parameters 📉
  6. Copper recovery improvement in an industrial flotation circuit: A case study of Sarcheshmeh copper mine 🏗️
  7. Recovery of coal particles from a tailing dam for environmental protection and economical beneficiations 🌍

Conclusion:

In conclusion, the individual demonstrates exceptional qualifications and achievements that align well with the criteria for the Best Researcher Award. Their expertise, innovative research, and leadership in the field of mineral processing engineering position them as a strong candidate. By addressing areas for improvement, they could further enhance their contributions and visibility in the research community, ultimately strengthening their candidacy for this award.

Dure Najaf Iqbal – Materials Science and Engineering – Best Researcher Award

Dure Najaf Iqbal - Materials Science and Engineering - Best Researcher Award

University of Lahore - Pakistan

AUTHOR PROFILE

SCOPUS

🔬 EXPERTISE IN ORGANIC AND POLYMER CHEMISTRY

Dr. Dure Najaf Iqbal is an accomplished Associate Professor in the Department of Chemistry at The University of Lahore. With a PhD in Chemistry specializing in Organic and Polymer Chemistry from Lahore College for Women University, his research focuses on microwave-assisted synthesis, polymer chemistry, hydrogels, and synthetic organic techniques. His work in these fields is marked by advanced research skills and a strong command of analytical techniques.

🎓 ACADEMIC ACHIEVEMENTS AND EDUCATION

Dr. Iqbal's academic background reflects his dedication to chemistry. He earned his Bachelor’s and Master’s degrees from the University of the Punjab, Lahore, with a focus on Organic Chemistry. His doctoral research, supervised by Dr. Erum Akbar Hussain, involved the synthesis and characterization of autochthonic guar gum derivatives. His education has been supplemented by extensive training in analytical techniques, computer literacy, and literature review methodologies.

👩‍🏫 TEACHING EXPERIENCE AND IMPACT

With a rich teaching history, Dr. Iqbal has contributed significantly to the education sector. He served as an Assistant Professor at the University of the Punjab, where he successfully managed M.Phil. research projects. His earlier roles include teaching FSc. classes at Punjab Group of Colleges and Chemistry at the Beaconhouse School System, where he was involved in curriculum development and science exhibitions.

🏭 INDUSTRIAL EXPERIENCE IN CHEMICALS

Before transitioning to academia, Dr. Iqbal gained valuable industrial experience as a Lab Manager at MB Dyes Chemical and Silk Industry. This role provided him with practical insights into the chemical industry, enriching his understanding of applied chemistry and enhancing his research capabilities.

📜 SIGNIFICANT THESIS AND RESEARCH

Dr. Iqbal’s PhD thesis, “Synthesis and Characterization of Autochthonic Guar Gum Derivatives,” stands out for its innovative approach to polymer chemistry. His MSc. thesis on steroid extraction from medicinal plants also highlights his expertise in organic synthesis and characterization. His research has been presented at various international and national conferences, reflecting his active engagement in the scientific community.

🌐 CONFERENCE PARTICIPATION AND ORGANIZATION

Dr. Iqbal has been actively involved in numerous conferences and seminars, both as a participant and organizer. His contributions to events such as the International Conference on Materials Science and Nano Technology and the Conference on Recent Advances in Chemistry demonstrate his commitment to advancing the field of chemistry and fostering academic collaboration.

🛠️ COMPUTER LITERACY AND RESEARCH SKILLS

Proficient in essential software like Excel, MS-Word, Chem Window, and Chem Draw, Dr. Iqbal employs these tools to enhance his research and teaching activities. His ability to conduct thorough literature reviews and apply advanced statistical techniques underscores his strong analytical and research skills, which are critical for his work in polymer and organic chemistry.

NOTABLE PUBLICATION

Assessment of carcinogenic and non-carcinogenic risk of exposure to potentially toxic elements in tea infusions: Determination by ICP-OES and multivariate statistical data analysis
Authors: Ahmed, M., Ahmad, M., Khan, M.A., Wani, T.A., Zargar, S.
Year: 2024
Journal: Journal of Trace Elements in Medicine and Biology

Development and characterization of a biodegradable film based on guar gum-gelatin@sodium alginate for a sustainable environment
Authors: Shah Bukhary, S.K.H., Choudhary, F.K., Iqbal, D.N., Ali, I., Ahmed, M.
Year: 2024
Journal: RSC Advances

Efficient drug delivery potential and antimicrobial activity of biocompatible hydrogels of dextrin/Na-alginate/PVA
Authors: Nazir, A., Abbas, M., Kainat, F., Alshawwa, S.Z., Iqbal, M.
Year: 2024
Journal: Heliyon

Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications
Authors: Haider, A., Khan, S., Iqbal, D.N., Kanwal, Q., Mustafa, G.
Year: 2024
Journal: European Polymer Journal

Fabrication of CMC/PVA/Dextrin-Based Polymeric Membrane for Controlled Release of Cefixime With Enhanced Antibacterial Activity
Authors: Nazir, A., Abbas, M., Iqbal, D.N., Ahmad, N., Iqbal, M.
Year: 2024
Journal: Dose-Response

Nanocellulose/wood ash-reinforced starch-chitosan hydrogel composites for soil conditioning and their impact on pea plant growth
Authors: Iqbal, D.N., Tariq, Z., Philips, B., Ali, I., Ahmed, M.
Year: 2024
Journal: RSC Advances

AHMED MOHAMMED BAYOUMY – Materials Science and Engineering – Best Researcher Award

AHMED MOHAMMED BAYOUMY - Materials Science and Engineering - Best Researcher Award

Faculty of Science, Ain Shams University - Egypt

AUTHOR PROFILE

SCOPUS

WORK EXPERIENCE AND EDUCATION:

AHMED MOHAMMED BAYOUMY has extensive experience in teaching and research. He has been a Teaching Assistant at the Faculty of Science, Ain Shams University since December 2018, and previously served as a Demonstrator from February 2013 to December 2018. Ahmed is currently pursuing a PhD in Nanoscience at the Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST) in Alexandria, Egypt, expected to complete in April 2024. He holds an MSc in Biophysics from Ain Shams University, where he conducted significant research on water purification using nanomodified natural polymers.

TEACHING AND LABORATORY INSTRUCTION:

At Ain Shams University, AHMED MOHAMMED BAYOUMY has demonstrated and discussed experiments in physics and biophysics labs for undergraduate students. He has provided assistance in problem-solving sessions and supervised senior students' graduation projects, ensuring they meet their academic requirements and gain practical experience in their fields of study.

RESEARCH IN NANOSCIENCE:

AHMED's PhD research focuses on nanoscience, particularly in the interaction between biopolymers and organic pollutants for water purification. His MSc thesis involved studying the interaction between chitosan biopolymer and ibuprofen to remove ibuprofen from water, combining theoretical molecular modeling and experimental adsorption trials to validate the interaction mechanism.

WATER PURIFICATION RESEARCH:

One of AHMED's significant contributions is his research on water purification using nanomodified natural polymers. His work has demonstrated the potential of biopolymers in removing organic pollutants from water, contributing to advancements in environmental science and sustainable water treatment technologies.

PUBLICATIONS AND ACADEMIC CONTRIBUTIONS:

AHMED has authored multiple research papers in prestigious journals. His publications cover various topics, including the interaction of biopolymers with graphene for bio-electronic applications, polysulfone-based mixed matrix membranes for wastewater treatment, and inkjet-printed supercapacitor electrodes. His work is widely recognized and cited in the scientific community.

COLLABORATIVE RESEARCH:

AHMED has collaborated with numerous researchers and institutions on projects that address global challenges in water treatment and environmental protection. His interdisciplinary approach and dedication to innovation have resulted in significant advancements in his field, showcasing his ability to work effectively in diverse research environments.

ACADEMIC ACHIEVEMENTS:

Throughout his academic career, AHMED has received accolades for his contributions to science and education. His dedication to teaching, research, and collaborative projects has made him a respected figure in the academic community, with a promising future in nanoscience and biophysics research.

NOTABLE PUBLICATION

Physical prospective of polyamide 6 for the consolidation of fragile vegetable tanned Leather artifacts
Authors: Abdel-Maksoud, G., Mohamed, O.A., Mohamed, W.S., Elhaes, H., Ibrahim, M.A.
Year: 2024
Journal: Journal of Cultural Heritage

Polysulfone-based mixed matrix membranes loaded with a multifunctional hierarchical porous Ag-Cu dendrites@SiO2 core-shell nanostructure for wastewater treatment
Authors: Sadek, A.H., Abdel-Karim, A., Mohsenpour, S., Ibrahim, M., Mohamed, G.G.
Year: 2023
Journal: Process Safety and Environmental Protection

Interaction of biopolymers with graphene for bio-electronic applications
Authors: Bayoumy, A.M., Ibrahim, M.A., Osman, A., Abdelmoneim, A.
Year: 2023
Journal: Optical and Quantum Electronics
Volume: 55(7)
Article: 622

InkJet-Printed Supercapacitor Electrodes of Graphene-Carboxymethyl Cellulose Biocomposite Ink
Authors: Bayoumy, A.M., Ibrahim, M.A., Osman, A., Abdelmoneim, A.
Year: 2023
Journal: Solid State Phenomena

Exploring the electronic, optical, and bioactive properties for new modified fullerenes via molecular modeling
Authors: El-Mansy, M.A.M., Bayoumy, A.M., Elhaes, H., Ibrahim, M.A.
Year: 2023
Journal: Optical and Quantum Electronics
Volume: 55(1)
Article: 100