shuren wang | nanofiber materials | Best Researcher Award

Prof. shuren wang | nanofiber materials | Best Researcher Award

professor at Henan Polytechnic University, China

Professor Shuren Wang is a distinguished expert in civil and geotechnical engineering, currently serving as a professor at the School of Civil Engineering, Henan Polytechnic University, China. He is also an adjunct professor at the University of New South Wales, Australia. Recognized among the world’s top 2% scientists (2022-2024) by Stanford University, Professor Wang has made significant contributions to rock mechanics, numerical simulation analysis, and geotechnical engineering. His research has led to numerous publications, patents, and state-level awards in China, solidifying his reputation as a leader in the field.

profile

orcid

Education

Professor Wang earned his PhD in Engineering Mechanics from the University of Science and Technology Beijing in June 2005. His academic foundation has been instrumental in shaping his research in geotechnical engineering, particularly in the areas of numerical simulations and rock mechanics.

Experience

After obtaining his PhD, Professor Wang began his academic career as an Associate Professor at the China University of Geosciences in Beijing. He later joined Yanshan University, where he served as both Associate Professor and Professor in the School of Civil Engineering and Mechanics. Since 2015, he has been a full professor at Henan Polytechnic University, furthering his research and mentoring young scholars in the field. His international collaborations include his role as an adjunct professor at the University of New South Wales, Australia.

Research Interests

Professor Wang’s primary research interests lie in geotechnical engineering, rock mechanics, and numerical simulation analysis. His work focuses on the mechanical behavior of materials under dynamic and static loads, failure mechanisms in rock structures, and anchoring technologies for engineering stability. His projects have been funded by major institutions, including the National Natural Science Foundation of China and the International Cooperation Project of Henan Province.

Awards

Throughout his career, Professor Wang has received numerous accolades, including the prestigious 2015 Endeavour Research Fellowship awarded by the Australian Government. He has been recognized with 15 state-level and provincial-level awards in China for his contributions to engineering research and innovation. His inclusion in the world’s top 2% scientists list by Stanford University further underscores his impact on the field.

Selected Publications

Wang, S., Cheng, C., Gong, J., & Song, Z. (2025). “Dynamic mechanical properties of magnesium oxychloride-based titanium gypsum concrete after high-temperature exposure.” Construction and Building Materials, 472, 140841. (SCI)

Wang, S., Wu, X.G., Yang, J.H., & Zhao, J.Q. (2020). “Modeling mechanical behavior of lightweight concrete structures subjected to 3D coupled static-dynamic loads.” Acta Mechanica, 231(11), 4497-4511. (SCI)

Wang, S., Wu, X.G., Zhao, Y.H., & Hagan, P. (2019). “Evolution characteristics of composite pressure-arch in thin bedrock of overlying strata during shallow coal mining.” International Journal of Applied Mechanics, 11(5), 1950030. (SCI)

Wang, S., Zhang, J., Li, C., & Li, Z. (2022). “Seepage characteristics of fractured rock mass with non-equal width filling.” Ain Shams Engineering Journal, 13, 101794. (SCI)

Wang, S., Zhao, J.Q., Wu, X.G., & Yang, J.H. (2021). “Meso-scale simulations of lightweight aggregate concrete under impact loading.” International Journal of Simulation Modelling, 20(2), 291-302. (SCI)

Rui, D., Wu, Z., Ji, M., & Wang, S. (2019). “Remediation of Cd- and Pb-contaminated clay soils through combined freeze-thaw and soil washing.” Journal of Hazardous Materials, 269, 87-95. (SCI)

Wang, S., Xu, C., Li, Z., & Chang, F. (2022). “Cracking behavior of concrete/rock bi-material specimens containing a parallel flaw pair under compression.” Construction and Building Materials, 360, 129440. (SCI)

Conclusion

Professor Shuren Wang’s distinguished academic career, groundbreaking research, international recognition, extensive publications, and commitment to innovation make him a highly suitable candidate for the Best Researcher Award. His contributions have had a lasting impact on geotechnical engineering, and his work continues to inspire advancements in the field. As a dedicated scholar and innovator, his selection for this prestigious award would be a well-deserved acknowledgment of his exceptional achievements.

Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assist. Prof. Dr Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assistant Professor, Concordia University, Canada

Dr. Hang Xu is an Assistant Professor in the Department of Mechanical, Industrial, and Aerospace Engineering at Concordia University, Montreal, Canada. With a Ph.D. in Mechanical Engineering from McGill University and an MSc in Aircraft Design from Beijing University of Aeronautics and Astronautics, Dr. Xu specializes in mechanical metamaterials, smart structures, and additive manufacturing. His research focuses on developing advanced materials with programmable morphing and motion for aerospace, medical, and robotic applications. Prior to joining Concordia, he held research positions at Imperial College London and Siemens, contributing to innovations in multi-stable structures, soft robotics, and medical devices. Dr. Xu is recognized for his teaching excellence and has received awards for his contributions to research during the COVID-19 pandemic.

Professional Profile

Orcid

Scopus

Education 🎓

  • Doctorate in Mechanical Engineering, McGill University (2013–2018)
    Supervisor: Damiano Pasini
  • Master’s Thesis in Aircraft Design, Beijing University of Aeronautics and Astronautics (2011–2013)
    Supervisor: Yuanming Xu
  • Bachelor’s in Aircraft Design and Engineering, Shenyang Aerospace University (2007–2011)
    Supervisor: Weiping Zhang

Experience 💼

  • Assistant Professor, Concordia University (2022–Present)
    Research on functional/smart metamaterials for aerospace, nautical, and medical applications.
  • Research Associate, Imperial College London (2020–2022)
    Developed multi-stable structures, soft robots, and medical devices.
  • Postdoctoral Researcher, McGill University (2018–2020)
    Worked on thermally actuated deployable mechanisms and additive manufacturing processes.
  • Internships: Chinese Aircraft Design Institute of Aviation Medicine (2012–2013) and Shenyang Aircraft Design Institute (2010–2011).

Awards and Honors 🏆

  • Teaching Excellence Award, Concordia University (2023)
  • Associate Fellowship of the Higher Education Academy (AFHEA), UK (2022)
  • Excellent Contribution to Research in COVID-19 Pandemic, Imperial College London (2021)
  • Winner of 3D-Printing Workshop Design Challenge, McGill University (2019)

Research Focus 🔬

Dr. Xu’s research focuses on mechanical metamaterialssmart materials and structures, and additive manufacturing. His work aims to develop materials with programmable morphing and motion for applications in aerospace structuressoft roboticsmedical devices, and composite materials. Key areas include multiscale mechanics, finite element analysis, and the design of multi-stable structures for innovative functionalities.

Publication Top Notes 📚

  1. Embedded pressure sensing metamaterials using TPU-graphene composites and additive manufacturing
  2. Generalized tessellations of superellipitcal voids in low porosity architected materials for stress mitigation
  3. Thermally actuated hierarchical lattices with large linear and rotational expansion
  4. Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  5. ABAQUS user subroutine UMAT for elastoplastic nonlinear kinematic hardening material (Mróz model) with anisotropic plasticity
  6. Digitally Programmable Architected Materials with Static and Dynamic Reconfiguration
  7. Multi-stable meta-materials with programmable reconfigurations for soft robots
  8. 3D printed soft metamaterial force sensors for gait monitoring using TPU-graphene composites
  9. Overcoming the strength-modulus tradeoff using double network metamaterial lattices
  10. Multi-stable architectured materials with high-mobility morphing

Conclusion 🌟

Dr. Hang Xu is a leading researcher in mechanical metamaterials and smart structures, with a strong focus on innovative applications in aerospace, robotics, and medical devices. His contributions to teaching, research, and industry collaborations highlight his commitment to advancing materials science and engineering. Through his work, Dr. Xu continues to push the boundaries of programmable materials, paving the way for future technological advancements. 🚀

 

Ke Liu | Materials | Best Researcher Award

Dr. Ke Liu | Materials | Best Researcher Award

PHD, University of Science and Technology Beijing, China

Ke Liu, a dynamic researcher in Metallurgical Engineering, is currently pursuing his Ph.D. at the University of Science and Technology Beijing. At 30 years old, Liu has established himself as a key innovator in the fields of solid waste resource utilization, CO2 recycling, heat energy storage, and electrochemistry. With several high-impact publications and patents, he actively contributes to sustainable industrial solutions. His current research includes the development of novel materials for phase change energy storage and CO2 utilization, promising significant advancements in environmental protection. His international experience includes a joint doctoral program with the University of Tokyo, reflecting his global approach to tackling pressing environmental challenges.

Profile

Scopus

Education

Ke Liu’s academic journey began at North China University of Science and Technology, where he earned his Bachelor’s and Master’s degrees in Metallurgical Engineering (2017). He is currently pursuing his Ph.D. in the same field at the University of Science and Technology Beijing (2020-2025), with a focus on metallurgical materials and environmental applications. Liu has also enriched his academic profile through a prestigious joint program with the University of Tokyo’s Department of Materials Engineering (2023-2024). Throughout his education, Liu has continually pushed the boundaries of material science, dedicating his work to the sustainable use of industrial by-products and addressing global challenges like energy storage and CO2 recycling.

Experience

Ke Liu has extensive research experience in advanced metallurgical engineering. He has contributed significantly to national projects, including the National Natural Science Foundation of China (NSFC) and various industry collaborations with companies such as Baosteel and Tangshan Iron & Steel. Liu played a key role in studying heat transfer mechanisms and energy storage materials, with a particular focus on steel slag-based composite materials. His work on phase change materials and CO2 recycling has been pivotal in advancing sustainable practices in metallurgy. Additionally, Liu has been part of several research and development projects, focusing on topics like desulfurization technology and protective slag development. His collaborations extend globally, including his joint program at the University of Tokyo.

Awards and Honors

Ke Liu has received numerous prestigious awards recognizing his academic excellence and contributions to research. In 2023, he was awarded the Doctoral State Scholarship, a national-level honor, for his outstanding research. Liu has been named an “Academic Star” within his faculty and is a candidate for the “Top Ten Academic Stars” at his university. He has also received recognition as an Outstanding Graduate Student and Outstanding PhD Graduate. These accolades underscore his dedication to advancing metallurgy and environmental sustainability. His achievements reflect his ability to bridge the gap between academic research and practical applications in the industry.

Research Focus

Ke Liu’s research primarily revolves around the utilization of solid waste, the development of advanced materials for energy storage, CO2 recycling, and electrochemistry. His work aims to address pressing global challenges such as climate change and resource depletion. Liu is particularly focused on steel slag-based phase change materials, which offer a sustainable way to store thermal energy. Additionally, he explores the electrochemical properties of materials in CO2 recycling and wastewater treatment. His projects include pioneering work on energy storage systems and the development of new, more efficient materials for industrial processes. Liu’s research has the potential to significantly reduce the environmental impact of industries like steelmaking.

Publications

  1. Preparation and characterization of steel slag-based low, medium, and high-temperature composite phase change energy storage materials 📄
  2. Properties and Applications of Shape-Stabilized Phase Change Energy Storage Materials Based on Porous Material Support—A review 📄
  3. Novel low-cost steel slag porous ceramic-based composite phase change material: An innovative strategy for comprehensive utilization of steel slag resources 📄
  4. Effect of CaO-SiO2-FeO slag system on coal gasification reaction in CO2-Ar atmosphere and kinetic analysis 📄
  5. Melt Structure of Calcium Aluminate-based Non-reactive Mold Flux: Molecular Dynamics Simulation and Spectroscopic Experimental Verification 📄
  6. Effect of MgO on the Viscosity and Structure of CaO-Al2O3-B2O3-Based Non-reactive Mold Flux 📄
  7. Innovative strategies for thermal storage of steel slag-modified porous ceramic-based low-temperature composite phase change materials 📄
  8. The Behavior of CO2 Supersonic Jets in the Converter Slag-Splashing Process 📄
  9. Numerical Simulation of CO2 Used for Slag Splashing Process in Converter 📄

 

Beatriz Sousa Monteiro – Materials Science and Engineering – Best Researcher Award

Beatriz Sousa Monteiro - Materials Science and Engineering - Best Researcher Award

FEUP - Portugal

AUTHOR PROFILE

SCOPUS

MATERIALS ENGINEERING EXPERT 🛠️

Beatriz Sousa Monteiro is a dedicated researcher in Materials Engineering, specializing in advanced manufacturing techniques. Her work focuses on the microstructure and mechanical properties of various materials, including metals, ceramics, and composites. Through her innovative research, she contributes to the development of cutting-edge materials for industrial applications.

ADDITIVE MANUFACTURING INNOVATOR 🖨️

One of Beatriz's primary research interests is in Additive Manufacturing (AM). She has explored the use of this technology to optimize designs and material properties, including topology optimization for robotic components. Her expertise in AM extends to working with stainless steel and other advanced alloys, enhancing material performance.

JOINING TECHNOLOGY RESEARCHER 🔗

Beatriz has also contributed to the field of joining technologies, particularly in brazing techniques. Her studies on the brazing of titanium and alumina using innovative thin films have opened up new possibilities for the creation of high-strength joints between dissimilar materials, critical for aerospace and medical applications.

NANOCOMPOSITE DEVELOPER 🔬

In her recent work, Beatriz has been involved in the production and characterization of copper-carbon nanotube (Cu/CNT) nanocomposites. These materials offer superior electrical and mechanical properties, making them ideal for next-generation electronics and thermal management systems. Her research is helping to advance the field of nanotechnology.

RESEARCH PUBLICATIONS CONTRIBUTOR 📚

Beatriz has co-authored numerous articles in respected scientific journals. Her publications cover a range of topics, including the impact of heat treatment on stainless steel and the development of innovative brazing techniques. Her research not only advances academic knowledge but also has practical applications in various industries.

EVENT ORGANIZER & SPEAKER 🎤

Beyond her research, Beatriz plays an active role in academic and industry events. She has organized workshops and exhibitions focused on Materials Engineering, introducing high school students to the world of engineering with a focus on additive manufacturing, metal processing, and biomaterials. Her outreach efforts are inspiring the next generation of engineers.

INNOVATION IN EDUCATION 📚

Beatriz is passionate about education and regularly engages with young students through events like "Engineer Profession Week." She has been a speaker and mentor, demonstrating the latest technologies and research in materials science, including nanotechnology and microfabrication.

NOTABLE PUBLICATION

Title: Microstructure and Mechanical Properties of Ti6Al4V to Al2O3 Brazed Joints Using Ti-Ag/Cu-Ti Thin Films
Authors: Monteiro, B., Simões, S.
Journal: Metals
Year: 2024

Title: Topology Optimization of a Robot Gripper with nTopology
Authors: Monteiro, B.S., Rocha, F., Costa, J.M.
Journal: U.Porto Journal of Engineering
Year: 2024

Title: Production and Characterization of Cu/CNT Nanocomposites
Authors: Carneiro, Í., Monteiro, B., Ribeiro, B., Fernandes, J.V., Simões, S.
Journal: Applied Sciences (Switzerland)
Year: 2023

Roshan Khadka – Materials Science and Engineering – Best Researcher Award

Roshan Khadka - Materials Science and Engineering - Best Researcher Award

Plant and Food Research - New Zealand

AUTHOR PROFILE

SCOPUS

🎓 ACADEMIC EXCELLENCE IN CHEMICAL SCIENCE AND MATERIALS ENGINEERING

Roshan Khadka holds a PhD in Chemical Science from the University of Auckland, New Zealand (2019), with a thesis focused on the development of insect olfactory receptor-based biosensors. His academic journey includes a Master’s degree in Advanced Material Engineering from Kongju National University, South Korea (2015), where he studied the enhancement of optoelectrical properties of PEDOT-based thin films, and a Bachelor’s degree in Mechanical Engineering from Kathmandu University, Nepal (2012).

🔬 LEADING RESEARCHER IN MATERIALS SCIENCE AND BIOSENSORS

Currently, Roshan Khadka is an Associate Investigator at The MacDiarmid Institute for Advanced Materials and Nanotechnology and a Scientist at The New Zealand Institute for Plant and Food Research Limited. His work primarily involves the development and application of advanced materials, including biocompatible supercapacitors and conductive polymers for sensor applications. His role is crucial in advancing the frontiers of material science and its practical applications.

🧪 EXPERT IN CONDUCTIVE POLYMERS AND SENSOR TECHNOLOGIES

Roshan's research expertise extends to the development of hybrid conductive polymers and strain sensors, as evidenced by his contributions to publications such as the New Journal of Chemistry and ACS Applied Polymer Materials. His work on enhancing vapor phase hybridized polymers and graphene oxide-based materials highlights his innovative approach to improving sensor performance and material durability.

🔍 PIONEER IN BIOSENSOR TECHNOLOGIES AND INSECT OLFACTORY RECEPTORS

A significant part of Roshan Khadka’s research focuses on biosensors utilizing insect olfactory receptors. His studies have led to advancements in electrochemical detection of odorant compounds, demonstrated in journals like Sensors and Actuators B: Chemical and Biosensors and Bioelectronics. His work aims to create highly sensitive and specific detection systems, contributing to both scientific knowledge and practical applications.

📝 AUTHOR OF HIGH-IMPACT SCIENTIFIC PUBLICATIONS

Roshan has authored several influential papers on topics such as ammonia sensing and electrochemical stability in bioelectronic systems. His publications in journals such as Polymer and Rsc Advances showcase his contributions to the development of innovative materials and sensors, reflecting his commitment to advancing the field of materials science.

🌍 DEDICATED TO GLOBAL RESEARCH AND COLLABORATION

Throughout his career, Roshan Khadka has engaged in international research collaborations and held various roles, including post-doctoral scientist and project assistant. His experience spans multiple countries and institutions, reflecting his dedication to global scientific advancement and interdisciplinary research.

🎓 ACADEMIC TEACHING AND SUPERVISION EXPERIENCE

In addition to his research, Roshan has gained valuable experience as a Graduate Teaching Assistant and Examination Supervisor at the University of Auckland. His role in academic instruction and supervision underscores his commitment to education and mentorship within the scientific community.

NOTABLE PUBLICATION

A comparative study between vapor phase polymerized PPy and PEDOT - Thermoplastic polyurethane composites for ammonia sensing
Authors: F.D.M. Fernandez, R. Khadka, J.-H. Yim
Journal: Polymer
Year: 2021

Insect odorant receptor nanodiscs for sensitive and specific electrochemical detection of odorant compounds
Authors: J.A. Cheema, N. Aydemir, C. Carraher, A. Kralicek, J. Travas-Sejdic
Journal: Sensors and Actuators, B: Chemical
Year: 2021

Highly porous, soft, and flexible vapor-phase polymerized polypyrrole-styrene-ethylene-butylene-styrene hybrid scaffold as ammonia and strain sensor
Authors: F.D.M. Fernandez, R. Khadka, J.-H. Yim
Journal: RSC Advances
Year: 2020

Role of polyethylene oxide content in polypyrrole linear actuators
Authors: R. Khadka, P. Zhang, N. Tuan Nguyen, T.F. Otero, R. Kiefer
Journal: Materials Today Communications
Year: 2020

Synergistic improvement in the performance of insect odorant receptor based biosensors in the presence of Orco
Authors: R. Khadka, C. Carraher, C. Hamiaux, J. Travas-Sejdic, A. Kralicek
Journal: Biosensors and Bioelectronics
Year: 2020

AHMED MOHAMMED BAYOUMY – Materials Science and Engineering – Best Researcher Award

AHMED MOHAMMED BAYOUMY - Materials Science and Engineering - Best Researcher Award

Faculty of Science, Ain Shams University - Egypt

AUTHOR PROFILE

SCOPUS

WORK EXPERIENCE AND EDUCATION:

AHMED MOHAMMED BAYOUMY has extensive experience in teaching and research. He has been a Teaching Assistant at the Faculty of Science, Ain Shams University since December 2018, and previously served as a Demonstrator from February 2013 to December 2018. Ahmed is currently pursuing a PhD in Nanoscience at the Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST) in Alexandria, Egypt, expected to complete in April 2024. He holds an MSc in Biophysics from Ain Shams University, where he conducted significant research on water purification using nanomodified natural polymers.

TEACHING AND LABORATORY INSTRUCTION:

At Ain Shams University, AHMED MOHAMMED BAYOUMY has demonstrated and discussed experiments in physics and biophysics labs for undergraduate students. He has provided assistance in problem-solving sessions and supervised senior students' graduation projects, ensuring they meet their academic requirements and gain practical experience in their fields of study.

RESEARCH IN NANOSCIENCE:

AHMED's PhD research focuses on nanoscience, particularly in the interaction between biopolymers and organic pollutants for water purification. His MSc thesis involved studying the interaction between chitosan biopolymer and ibuprofen to remove ibuprofen from water, combining theoretical molecular modeling and experimental adsorption trials to validate the interaction mechanism.

WATER PURIFICATION RESEARCH:

One of AHMED's significant contributions is his research on water purification using nanomodified natural polymers. His work has demonstrated the potential of biopolymers in removing organic pollutants from water, contributing to advancements in environmental science and sustainable water treatment technologies.

PUBLICATIONS AND ACADEMIC CONTRIBUTIONS:

AHMED has authored multiple research papers in prestigious journals. His publications cover various topics, including the interaction of biopolymers with graphene for bio-electronic applications, polysulfone-based mixed matrix membranes for wastewater treatment, and inkjet-printed supercapacitor electrodes. His work is widely recognized and cited in the scientific community.

COLLABORATIVE RESEARCH:

AHMED has collaborated with numerous researchers and institutions on projects that address global challenges in water treatment and environmental protection. His interdisciplinary approach and dedication to innovation have resulted in significant advancements in his field, showcasing his ability to work effectively in diverse research environments.

ACADEMIC ACHIEVEMENTS:

Throughout his academic career, AHMED has received accolades for his contributions to science and education. His dedication to teaching, research, and collaborative projects has made him a respected figure in the academic community, with a promising future in nanoscience and biophysics research.

NOTABLE PUBLICATION

Physical prospective of polyamide 6 for the consolidation of fragile vegetable tanned Leather artifacts
Authors: Abdel-Maksoud, G., Mohamed, O.A., Mohamed, W.S., Elhaes, H., Ibrahim, M.A.
Year: 2024
Journal: Journal of Cultural Heritage

Polysulfone-based mixed matrix membranes loaded with a multifunctional hierarchical porous Ag-Cu dendrites@SiO2 core-shell nanostructure for wastewater treatment
Authors: Sadek, A.H., Abdel-Karim, A., Mohsenpour, S., Ibrahim, M., Mohamed, G.G.
Year: 2023
Journal: Process Safety and Environmental Protection

Interaction of biopolymers with graphene for bio-electronic applications
Authors: Bayoumy, A.M., Ibrahim, M.A., Osman, A., Abdelmoneim, A.
Year: 2023
Journal: Optical and Quantum Electronics
Volume: 55(7)
Article: 622

InkJet-Printed Supercapacitor Electrodes of Graphene-Carboxymethyl Cellulose Biocomposite Ink
Authors: Bayoumy, A.M., Ibrahim, M.A., Osman, A., Abdelmoneim, A.
Year: 2023
Journal: Solid State Phenomena

Exploring the electronic, optical, and bioactive properties for new modified fullerenes via molecular modeling
Authors: El-Mansy, M.A.M., Bayoumy, A.M., Elhaes, H., Ibrahim, M.A.
Year: 2023
Journal: Optical and Quantum Electronics
Volume: 55(1)
Article: 100

BANTAMLAK BIRLIE – Materials Science and Engineering – Best Researcher Award

BANTAMLAK BIRLIE - Materials Science and Engineering - Best Researcher Award

Bahir Dar University - Ethiopia

AUTHOR PROFILE

Google Scholar

BANTAMLAK BIRLIE: A JOURNEY OF EXCELLENCE IN TEXTILE ENGINEERING AND INNOVATION 🌟

My educational journey has been a pursuit of mastery in Bachelor of Science in Textile Engineering and Manufacturing. Armed with a Master of Science in Textile Manufacturing and Material Science and Engineering, alongside a Bachelor of Science in Textile Engineering, I've delved deep into the intricacies of the field. For the past seven years, I've had the privilege of sharing my knowledge and insights as a lecturer and researcher at Bahir Dar University Ethiopian Institute of Textile and Fashion Technology. This experience has not only enriched my understanding of the discipline but also fueled my passion for exploration and innovation within the textile industry. Through rigorous academic pursuits and hands-on research, I have garnered a robust skill set and a keen eye for emerging trends and technologies.

ACADEMIC ACHIEVEMENTS AND COMMITMENT TO EXCELLENCE 📚

My academic achievements stand as milestones in my journey, reflecting my commitment to excellence and my aspiration to contribute meaningfully to the advancement of extraction and characterization of natural cellulosic fibers for green composite manufacturing applications due to its biodegradability and eco-friendly nature. As I look ahead, I am excited to continue pushing boundaries, fostering collaboration, and driving positive change in the ever-evolving landscape of textiles. My contributions to research and development, innovation, and extension have been multifaceted and impactful.

EXPERTISE IN SUSTAINABLE MATERIALS 🌿

One significant aspect of my work has been in the realm of sustainable materials, where I have dedicated myself to extracting and characterizing natural cellulosic fibers for green composite applications. This endeavor not only advances the field of materials science but also promotes environmentally friendly alternatives in various industrial applications. Additionally, my research has shed light on eco-friendly approaches for textile waste effluent treatment, addressing a critical issue in the textile industry and advocating for sustainable practices.

INNOVATIONS IN BIOBASED FLAME RETARDANCY 🔥

Furthermore, my exploration into biobased flame retardancy of textile polymeric materials has offered novel solutions for enhancing safety without compromising on eco-friendliness. These innovations stand as a testament to my dedication to pushing the boundaries of what is possible in the textile industry, ensuring that advancements are both cutting-edge and sustainable.

DEDICATION TO KNOWLEDGE DISSEMINATION 🧑‍🏫

Beyond research, I have actively engaged in knowledge dissemination by delivering lectures to graduate students, fostering a culture of learning and innovation. Through these efforts, I strive to not only contribute to the academic community but also inspire others to embrace sustainable practices and drive positive change in their respective fields.

PASSION FOR ENVIRONMENTAL SUSTAINABILITY 🌍

Through rigorous academic pursuits and hands-on research, I have garnered a robust skill set and a keen eye for emerging trends and technologies. My work emphasizes the importance of environmental sustainability, advocating for practices that protect and preserve our planet for future generations. This passion for sustainability permeates every aspect of my professional endeavors, from research to teaching.

VISION FOR THE FUTURE OF TEXTILES 🚀

As I look ahead, I am excited to continue pushing boundaries, fostering collaboration, and driving positive change in the ever-evolving landscape of textiles. My vision for the future includes continued contributions to research and development, particularly in sustainable materials and eco-friendly practices, ensuring that the textile industry evolves in a manner that is both innovative and responsible.

NOTABLE PUBLICATION

Textile effluent treatment methods and eco-friendly resolution of textile wastewater 2022 (110)

Nanotechnologies past, present and future applications in enhancing functionality of medical textiles: a review 2024

Textile Wastewater Treatment Using Polypyrrole/Polyphenol Oxidase Membranes 2024

Extraction and Characterization of Bast Fiber from Xanthium Oriental plant 2023

Textile effluent treatment methods and eco-friendly resolution of textile wastewater 2022