Hang Xu | Mechanical Engineering | Best Researcher Award

Dr Hang Xu | Mechanical Engineering | Best Researcher Award

Assistant Professor, Concordia University, Canada

Dr. Hang Xu is an Assistant Professor in the Department of Mechanical, Industrial, and Aerospace Engineering at Concordia University, Montreal, Canada. With a Ph.D. in Mechanical Engineering from McGill University and an MSc in Aircraft Design from Beijing University of Aeronautics and Astronautics, Dr. Xu specializes in mechanical metamaterials, aerospace structures, soft robotics, and composite materials. His research focuses on developing advanced materials with programmable morphing and motion for applications in aerospace, sensors, actuators, and medical devices. Prior to joining Concordia, he held research positions at Imperial College London, Siemens Canada, and McGill University. Dr. Xu is recognized for his contributions to materials science and engineering, earning awards such as the Best Presentation Award at CSME/CFD2024 and the Teaching Excellence Award at Concordia University.

Professional Profile

Orcid

Scopus

Education 🎓

Dr. Hang Xu earned his Ph.D. in Mechanical Engineering from McGill University (2013–2018), where he worked under the supervision of Dr. Damiano Pasini. He completed his Master’s in Aircraft Design at Beijing University of Aeronautics and Astronautics (2011–2013) under Dr. Yuanming Xu. His Bachelor’s degree in Aircraft Design and Engineering was obtained from Shenyang Aerospace University (2007–2011), supervised by Dr. Weiping Zhang. His academic journey reflects a strong foundation in aerospace and mechanical engineering, with a focus on advanced materials and structural design. Dr. Xu’s education has equipped him with expertise in multiscale mechanics, composite materials, and mechanical metamaterials, which he now applies to cutting-edge research and teaching at Concordia University.

Experience đź’Ľ

Dr. Hang Xu has a diverse professional background, including roles as a Research Associate at Imperial College London (2020–present), a Postdoctoral Intern at Siemens Canada (2019–2020), and a Postdoctoral Researcher at McGill University (2018–2019). Since 2022, he has been an Assistant Professor at Concordia University, where he teaches and leads research in aerospace and mechanical engineering. His industrial experience at Siemens involved working on aero-derivative gas turbines, while his academic roles have focused on mechanical metamaterials, soft robotics, and composite materials. Dr. Xu’s career bridges academia and industry, combining theoretical research with practical applications in aerospace, robotics, and medical devices.

Awards and Honors 🏆

Dr. Hang Xu has received several accolades, including the Best Presentation Award at the 2024 Canadian Society for Mechanical Engineering (CSME) International Congress and the Teaching Excellence Award from Concordia University in 2023 for his course on Aircraft Design. He was also recognized for his contributions to COVID-19 research at Imperial College London in 2021. His work on mechanical metamaterials and aerospace structures has earned him a reputation as a leading researcher in his field. These awards highlight his excellence in both research and teaching, underscoring his commitment to advancing engineering knowledge and mentoring the next generation of engineers.

Research Focus 🔬

Dr. Hang Xu’s research focuses on mechanical metamaterials, soft robotics, composite materials, and multiscale mechanics. He aims to develop advanced materials with programmable morphing and motion for innovative applications in aerospace structures, sensors, actuators, and medical devices. His work explores the design and optimization of materials with tailored properties, such as controllable thermal expansion, high stiffness, and programmable deformations. By integrating computational modeling and experimental validation, Dr. Xu’s research bridges the gap between material science and engineering, enabling the creation of next-generation technologies for aerospace, robotics, and healthcare.

Publication Top Notes 📚

  1. Generalized tessellations of superellipitcal voids in low porosity architected materials for stress mitigation
  2. Thermally Actuated Hierarchical Lattices With Large Linear and Rotational Expansion
  3. Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  4. Multiscale isogeometric topology optimization for lattice materials
  5. Multilevel hierarchy in bi-material lattices with high specific stiffness and unbounded thermal expansion
  6. Structurally Efficient Three-dimensional Metamaterials with Controllable Thermal Expansion

Conclusion 🌟

Dr. Hang Xu is a distinguished researcher and educator in mechanical and aerospace engineering, with a strong focus on mechanical metamaterials, soft robotics, and composite materials. His academic and professional journey, marked by prestigious awards and impactful research, demonstrates his commitment to advancing engineering solutions for real-world challenges. Through his innovative work and dedication to teaching, Dr. Xu continues to inspire and shape the future of engineering.

Xin Lai – Mechanical Engineering – Best Researcher Award-2795

Xin Lai – Mechanical Engineering – Best Researcher Award

Wuhan University of Technology – China

AUTHOR PROFILE

SCOPUS

🔬 SIGNIFICANCE OF RESEARCH

Fluid-structure interaction (FSI) problems present a fundamental challenge in Civil and Environmental Engineering, particularly when dealing with complex scenarios involving large geometric deformations and material failure. Accurate modeling of these interactions is crucial for designing resilient infrastructure, predicting structural behavior under extreme conditions, and enhancing safety measures. My research introduces a groundbreaking approach that combines Non-Ordinary State-Based Peridynamics (NOSB-PD) with Updated Lagrangian Particle Hydrodynamics (ULPH) to address these challenges and improve the modeling of fluid-structure interactions.

🔍 PROBLEM ADDRESSED

Traditional methods for solving fluid-structure interaction issues often struggle with handling discontinuities and large deformations in materials, resulting in inaccuracies and computational instability. The demand for a robust, stable, and accurate method to simulate these interactions, especially for Newtonian fluids, is critical for advancing engineering practices. My research fills this gap by developing a coupled framework that integrates NOSB-PD and ULPH, offering a novel perspective and solution to fluid-structure interaction problems.

🛠️ METHODOLOGY EMPLOYED

The methodology developed integrates NOSB-PD theory to describe the deformation and fracture of solid materials with ULPH to represent the flow of Newtonian fluids. NOSB-PD is particularly effective in handling discontinuities and fractures in solids, while ULPH provides superior computational accuracy for fluid dynamics. By coupling these methods, my approach effectively models fluid-structure interactions with large deformations and material failure, enhancing the accuracy and stability of simulations.

đź’ˇ KEY INNOVATION

A major innovation of this research is the development of a fluid-structure coupling algorithm that uses pressure as the transmission medium to manage the interface between fluids and structures. This approach ensures robust and stable simulations, accurately representing the dynamic interactions between fluids and structures under varying conditions. This advancement significantly improves the reliability of simulations in complex scenarios.

🌍 IMPACT ON ENGINEERING PRACTICES

The ULPH-NOSBPD coupling approach represents a significant contribution to the field of Civil and Environmental Engineering. It provides a novel framework for accurately simulating fluid-structure interactions, with potential applications in infrastructure design and environmental management. This research addresses long-standing challenges in the field and offers innovative solutions that advance engineering practices.

🏆 HONOR AND FUTURE VISION

Being considered for the “Best Researcher Award” is a profound honor, and I am grateful for the opportunity to showcase my work. I am committed to advancing the field of Civil and Environmental Engineering and contributing to the continued development of innovative solutions. Thank you for considering my nomination, and I look forward to furthering our understanding and application of fluid-structure interactions through my research.

NOTABLE PUBLICATIONS

Peridynamics simulations of geomaterial fragmentation by impulse loads

Authors: X. Lai, B. Ren, H. Fan, S. Li, C.T. Wu, R.A. Regueiro, L. Liu

Journal: International Journal for Numerical and Analytical Methods in Geomechanics

Year: 2015

A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials

Authors: X. Lai, L. Liu, S. Li, M. Zeleke, Q. Liu, Z. Wang

Journal: International Journal of Impact Engineering

Year: 2018

A peridynamics–SPH coupling approach to simulate soil fragmentation induced by shock waves

Authors: B. Ren, H. Fan, G.L. Bergel, R.A. Regueiro, X. Lai, S. Li

Journal: Computational Mechanics

Year: 2015

Higher-order nonlocal theory of Updated Lagrangian Particle Hydrodynamics (ULPH) and simulations of multiphase flows

Authors: J. Yan, S. Li, X. Kan, A.M. Zhang, X. Lai

Journal: Computer Methods in Applied Mechanics and Engineering

Year: 2020

Peridynamic stress is the static first Piola–Kirchhoff Virial stress

Authors: J. Li, S. Li, X. Lai, L. Liu

Journal: International Journal of Solids and Structures

Year: 2024

Yassir Wardi – Composite structures – Best Researcher Award

Yassir Wardi - Composite structures - Best Researcher Award

INSA Rennes/LGCGM - France

AUTHOR PROFILE

Scopus
ORCID

EARLY ACADEMIC PURSUITS

Yassir Wardi's academic journey began with a Bachelor's degree in Civil Engineering from Ecole Mohammadia d'Ingenieurs (EMI) in Morocco, where he laid the groundwork for his future in structural engineering. He furthered his education with a Master's degree in Structural Engineering from Budapest University of Technology and Economics (BUTE), Hungary, enhancing his knowledge in areas such as structural dynamics and seismic design. This journey culminated in a Ph.D. in Structural Engineering from INSA de Rennes, France, focusing on composite structures and finite element analysis.

PROFESSIONAL ENDEAVORS

As a structural engineer at ARC-S Group, Yassir Wardi gained hands-on experience in structural design and modeling of various constructions, including concrete, steel, and Cross-Laminated Timber (CLT) houses. His in-house R&D projects honed his skills in innovative structural systems and prepared him for his current role as a professor at Hubei University of Economics.

CONTRIBUTIONS AND RESEARCH FOCUS

Yassir's research focuses on composite structures, particularly the development of finite element models to analyze the behavior of composite beams under different loading conditions. His work has contributed to the understanding of structural response to time effects such as creep and shrinkage, enhancing the accuracy of structural predictions and design methodologies.

IMPACT AND INFLUENCE

Yassir's research has made a significant impact on the field of structural engineering, particularly in the analysis and design of composite structures. His publications in reputable journals and conferences have garnered attention, contributing to the advancement of knowledge and methodologies in the field.

ACADEMIC CITES

Yassir's publications have been cited multiple times, reflecting the relevance and impact of his research in the academic community. His work serves as a foundational resource for researchers and practitioners in the field of composite structures and finite element analysis.

LEGACY AND FUTURE CONTRIBUTIONS

Yassir Wardi's legacy lies in his dedication to advancing the understanding and design of composite structures. His future contributions are poised to further push the boundaries of knowledge in this field, paving the way for safer, more efficient, and sustainable structural solutions.

NOTABLE PUBLICATION

3D formulation of mono-symmetrical composite beams with deformable connection 2024