Antoni Mir Pons | Material Science and Engineering | Young Scientist Award

Mr. Antoni Mir Pons | Material Science and Engineering | Young Scientist Award

PhD | University of the Balearic Islands | Spain

Mr. Antoni Mir Pons develops research in the field of civil and structural engineering, with a particular focus on the study and application of iron-based shape memory alloys (Fe-SMA) for strengthening existing reinforced concrete structures. His scientific contributions reflect an advanced understanding of materials behavior under semi-cyclic loads and their influence on recovery stresses, which is essential for improving the resilience and sustainability of infrastructures. Currently engaged at the University of the Balearic Islands within the UIB Construct research group, Antoni’s work explores the mechanical performance and practical integration of Fe-SMA as an innovative reinforcement technology. He has presented significant findings at leading international conferences such as the fib PhD Symposium in Civil Engineering and the SMAR Conference in Italy, contributing to global knowledge on structural rehabilitation using smart materials. His previous collaborations with the AMADE group at the University of Girona involved theoretical and experimental studies on reinforced concrete structures strengthened with fiber-reinforced polymer (FRP) laminates, evaluating cracking behavior and proposing refinements to Eurocode and fib Model Code formulations. Antoni’s research also integrates climate resilience aspects, as seen in his participation in projects such as RESTART, focused on mitigating deterioration risks in existing concrete infrastructures under changing environmental conditions. Awarded for his outstanding Master’s Thesis on Fe-SMA reinforcement technology, Antoni continues to bridge experimental engineering with sustainable innovation, contributing to the evolution of active reinforcement systems that reduce environmental impact and extend the lifespan of civil structures. His ongoing doctoral research deepens this line of inquiry, enhancing the understanding of semi-cyclic load effects and establishing a strong foundation for future advancements in structural engineering.

Profile: Scopus
Fearuted Publications:

Experimental study on recovery stress losses in Fe-SMA rebars under semi-cyclic loads considering different activation temperatures and multiple activations. (2025). Construction and Building Materials.

Sandra Cunha Gonçalves | Materials Science and Engineering | Women Researcher Award

Prof. Dr. Sandra Cunha Gonçalves | Materials Science and Engineering | Women Researcher Award

Research Teacher | Federal Institute of Bahia | Brazil

Prof. Dr. Sandra Cunha Gonçalves has developed a solid academic and scientific career in Civil Engineering, Sustainability, and Environmental Studies, focusing on innovative solutions for the reuse of waste materials in the construction industry. Her research emphasizes solid waste management and the development of eco-friendly materials that incorporate vegetal fibers, modified starch, recycled gypsum, and other industrial by-products to minimize environmental impacts and promote sustainable practices in social housing. Gonçalves has contributed to advancing sustainable construction technologies through the creation of composites and biocomposites with improved physical and mechanical properties, offering alternatives to conventional materials with high energy consumption. Her ongoing projects explore life cycle analysis of materials, the use of green coconut fibers, and polymeric emulsions in gypsum matrices, generating significant results for structural efficiency and environmental performance. Her scientific output includes publications in national and international journals, book chapters, and conference presentations on sustainability, bioconstruction, and waste management. In addition to her research, she promotes extension activities that integrate social technology, environmental education, and vernacular architecture, strengthening the connection between science, culture, and community. At the Federal Institute of Bahia, Gonçalves leads research groups focused on material innovation and environmental education, mentoring new researchers committed to socio-environmental responsibility and construction efficiency. Her professional journey is distinguished by a strong dedication to sustainability, the integration of applied science with technical education, and the continuous pursuit of viable solutions that balance technical performance with the preservation of natural resources.

Profile: ORCID
Featured Publications
Gonçalves, S. C., da Silva Junior, M. F., Souza, M. T., de Amorim Júnior, N. S., & Ribeiro, D. V. (2025). Physicomechanical properties of recycled gypsum composites with polyvinyl acetate emulsion and treated short green coconut fibers. Buildings.

Yaxing Liu – Materials Science and Engineering – Best Researcher Award

Mr. Yaxing Liu - Materials Science and Engineering - Best Researcher Award

lecturer | Taiyuan University of Technology | China

Mr. Yaxing Liu has established strong expertise in the field of mechanical design and theory with a research focus on advanced rolling technology, material forming processes, and fatigue analysis of high-performance steels. His work investigates the mechanisms of strip edge defects, deformation behaviors in composite rolling, and fatigue performance under varying stress conditions, providing valuable insights for enhancing the precision, durability, and efficiency of manufacturing systems. He has contributed to the development of innovative control strategies for trimming processes and created accurate modeling approaches for predicting warping and deformation during steel and aluminum thin strip composite rolling. His research integrates both theoretical modeling and experimental validation to solve complex industrial challenges, ensuring significant improvements in quality control and defect prevention in metal forming industries. In addition to scholarly publications in high-impact journals, Liu’s contributions include patents addressing roll convexity adjustment mechanisms and compensation methods for roll diameter defects in rolling mills, showcasing his ability to translate fundamental research into practical engineering solutions. His continuous engagement in material behavior analysis under stress, defect mitigation techniques, and optimization of manufacturing processes reflects a clear trajectory toward advancing modern mechanical design and metallurgical engineering. With active collaboration across disciplines and consistent innovation in mechanical system optimization, his research strengthens both academic knowledge and industrial application. Yaxing Liu’s work demonstrates a balance of theoretical insight, experimental application, and practical implementation, marking him as a valuable contributor to the development of advanced rolling and forming technologies with wide relevance to the steel and aluminum industries. 155 Citations by 139 documents, 57 Documents, 7 h-index View.

Profile: Scopus
Featured Publications:
  1. Effect of multi‒directional forging on the evolution of intermetallic precipitates and mechanical properties in novel light refractory high-entropy alloys. (2025). Intermetallics.

  2. DDFNet: real-time salient object detection with dual-branch decoding fusion for steel plate surface defects. (2025). Journal of Iron and Steel Research International.

  3. Study on influence and mechanism of steel / aluminum composite thin strips preparation process on interfacial bonding strength. (2025). Suxing Gongcheng Xuebao Journal of Plasticity Engineering.

  4. Research on unbonded defect imaging method of corrugated clad plate based on laser ultrasonics. (2025). Measurement Journal of the International Measurement Confederation.

  5. Effect of two-pass rolling of textured roll and polished roll on surface topography and mechanical properties of 316L stainless steel ultra-thin strip. (2025). Journal of Iron and Steel Research International.

Wioletta Raczkiewicz – Materials Science and Engineering – Best Researcher Award

Wioletta Raczkiewicz - Materials Science and Engineering - Best Researcher Award

Kielce University of Technology - Poland

AUTHOR PROFILE

SCOPUS
GOOGLE SCHOLAR
ORCID

SUMMARY

Wioletta Raczkiewicz is a civil engineering expert with extensive academic and professional engagement in concrete structures, building renovation, and historic building conservation. With nearly three decades of involvement in technical education and structural research, the profile is marked by progressive academic roles at Kielce University of Technology. Key contributions include the development of stochastic models for fiber-reinforced concrete and ongoing dedication to educational and architectural engineering excellence. Current responsibilities as Associate Professor include teaching, mentoring, and research leadership in advanced concrete technologies and structural diagnostics.

EDUCATION

Earned a Master of Engineering in Civil Engineering in 1994 from Kielce University of Technology, with a specialization in Building Renovations and Historic Conservation. The thesis focused on adaptive reconstruction of Villa Zielona into a guesthouse. In 2008, completed a Doctor of Technical Sciences degree in Civil Engineering, specializing in Concrete Structures. The doctoral dissertation investigated stochastic parameter distributions in fiber-reinforced concrete under variable loading, reflecting a high level of analytical and modeling capability within modern structural engineering contexts.

PROFESSIONAL EXPERIENCE

Began professional career in 1995 at the Research Institute of Roads and Bridges in Warsaw, Kielce branch, as a technologist. Continued academic work at Kielce University of Technology from 1997 onward across multiple faculty transformations, evolving from early technical roles to current designation as Associate Professor since December 2023. Over the years, responsibilities have included curriculum development, scientific research, and faculty service. Academic progression reflects long-term contributions in concrete technology, civil infrastructure diagnostics, and the integration of historic and modern construction methods.

RESEARCH INTEREST

Focus areas include fiber-reinforced concrete behavior under variable loads, stochastic modeling in structural engineering, diagnostics of construction materials, and conservation technologies for historical buildings. Interested in the development of innovative rehabilitation solutions and structural assessments through computational and empirical approaches. Emphasizes interdisciplinary integration between modern construction science and architectural heritage preservation. Research aims at improving reliability and sustainability of concrete structures while advancing methodologies in structural health monitoring and damage prediction under real-world operational conditions.

AWARD AND HONOR

Recognized within institutional settings for consistent academic performance and contributions to structural engineering research. While no international honors are explicitly listed, appointment to Associate Professor reflects institutional acknowledgment of scholarly merit and educational impact. Continued involvement in faculty development and mentoring underscores professional credibility and recognition within the academic engineering community. Contributions to doctoral supervision and peer-reviewed scientific work further illustrate recognition and trust in research excellence and educational leadership in civil engineering.

RESEARCH SKILL

Possesses advanced capabilities in stochastic modeling, finite element analysis, material diagnostics, and structural assessment techniques. Proficient in the application of probabilistic methods to evaluate concrete behavior under stress conditions. Skilled in developing interdisciplinary projects involving historic building technologies and sustainable construction practices. Demonstrates technical proficiency in laboratory methods for testing fiber-reinforced composites and interpreting complex data sets for real-world engineering applications. Also experienced in supervising engineering theses and managing collaborative academic research projects with a focus on reliability and material performance.

PUBLICATIONS TOP NOTED

Authored several technical publications in the field of concrete structures and structural modeling. Focus areas in these works include reliability assessment of fiber-reinforced materials and diagnostic techniques in civil engineering structures. Publications contribute to ongoing discourse in probabilistic evaluation of construction materials and are regularly cited within specialized journals of civil engineering and materials science. Key works also address structural behavior under dynamic and cyclic loads, further emphasizing expertise in advanced analysis of concrete and historical restoration frameworks.

Title: Reinforcement corrosion testing in concrete and fiber reinforced concrete specimens exposed to aggressive external factors
Authors: W. Raczkiewicz, M. Bacharz, K. Bacharz, M. Teodorczyk
Journal: Materials

Title: Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies
Authors: A. Czajkowska, W. Raczkiewicz, M. Ingaldi
Journal: Production Engineering Archives

Title: Innovative strengthening of RC columns using a layer of a fibre reinforced concrete
Authors: P. Koteš, M. Vavruš, W. Raczkiewicz
Journal: Acta Polytechnica CTU Proceedings

Title: Temperature impact on the assessment of reinforcement corrosion risk in concrete by galvanostatic pulse method
Authors: W. Raczkiewicz, A. Wojcicki
Journal: Applied Sciences

Title: Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes
Author: W. Raczkiewicz
Journal: Science and Engineering of Composite Materials

CONCLUSION

Wioletta Raczkiewicz exemplifies scholarly excellence in civil engineering, particularly in structural analysis and building conservation. The academic and research trajectory demonstrates a commitment to combining theoretical modeling with practical engineering applications. Contributions to educational development, research innovation, and technical diagnostics reinforce a leadership position within the field. With a stable academic tenure and impactful scientific output, the profile remains a valuable asset to structural engineering advancement, especially in concrete technologies and heritage restoration methodologies.

Linnan Bi – Materials Science and Engineering – Best Researcher Award

Linnan Bi - Materials Science and Engineering - Best Researcher Award

University of Electronic Science and Technology of China - China

AUTHOR PROFILE

GOOGLE SCHOLER

⚡ RESEARCH THEMES AND SCIENTIFIC

Dr. Linnan Bi’s research themes include solid-state batteries, composite electrode design, high-conductivity solid electrolytes, ionic transport mechanisms, and nanoporous material systems. His mission is to redefine the structural landscape of energy storage materials through nanoscale engineering, aiming to overcome the limitations of traditional liquid-based systems. With a strong foundation in both theoretical and experimental techniques, he continues to investigate the core challenges in battery technology—safety, longevity, and efficiency. Through persistent scientific inquiry and innovation, he contributes to advancing the global pursuit of sustainable and reliable energy solutions.

🎓 EARLY ACADEMIC PURSUITS

Dr. Linnan Bi began his academic journey with a strong foundation in Materials Science and Engineering at the University of Electronic Science and Technology of China (UESTC). His early academic training was distinguished by a focus on nanomaterials, electrochemistry, and energy storage systems. By the time he completed his Ph.D. in 2024, he had already developed a keen interest in the structural modification of carbon-based materials and their application in advanced battery systems. His graduate research emphasized the integration of theoretical design with practical experimentation, particularly in the realm of lithium and sodium ion batteries. This balance between theory and hands-on experimentation enabled him to build a robust understanding of energy conversion and storage, which has defined the trajectory of his postdoctoral pursuits. His academic excellence was reflected in the rapid progression to postdoctoral research within a top-tier national research facility.

🧑‍🏫 PROFESSIONAL ENDEAVORS

Currently a postdoctoral fellow at the University of Electronic Science and Technology of China, Dr. Bi actively engages in innovative materials research with a strong focus on energy applications. His work encompasses both academic and applied projects, including advanced solid-state electrolyte development and the design of nanoporous carbon structures. He is a critical member of several institutional collaborations with leading Chinese and international universities. His professional activities include overseeing experimental designs, mentoring younger researchers, and publishing high-impact articles. With an eye toward practical innovation, Dr. Bi bridges the gap between laboratory research and industrial implementation. His roles are not only limited to scientific development but also extend into intellectual property, evidenced by his numerous patents in the battery technology sector. These initiatives have reinforced his status as a multifaceted scientist contributing to China’s clean energy and advanced materials sectors.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Bi’s research focuses on the structural optimization of solid-state electrolytes, nanoporous carbons, and advanced electrode materials for lithium and sodium ion batteries. His work explores how electrochemical interfaces evolve during charge-discharge cycles and seeks to improve conductivity and structural compatibility in solid-state battery systems. A notable dimension of his research is the development of heterojunction interfaces and reinforcement frameworks to enhance electrochemical performance and durability. His methodical approach combines simulation modeling with rigorous experimentation, allowing for comprehensive material characterization and performance validation. His published research, totaling 22 peer-reviewed articles, includes key findings in halide electrolyte performance, covalent organic frameworks in lithium-sulfur systems, and solid polymer electrolytes. His growing patent portfolio further underscores his inventive contributions to sustainable energy storage technologies.

🏅 ACCOLADES AND RECOGNITION

Dr. Linnan Bi has been recognized for both his academic innovation and impactful publications. He was honored in Wiley China’s “Excellent Author Program” for scientific innovation during April–June 2024, a reflection of his contributions to advancing material science in energy sectors. He also received the 5th Xinwei Academic Paper Award and the Xinwei Popularity Award for his high-quality research outputs. These accolades affirm his scientific standing within the Chinese research community and his growing influence internationally. His citation index currently exceeds 420, reflecting significant engagement and acknowledgment from the global scientific community. His patent filings and peer-reviewed articles reflect a mature body of work that balances fundamental science with technological relevance.

🌍 IMPACT AND INFLUENCE

Dr. Bi’s research holds direct relevance to global efforts toward cleaner energy and efficient power storage. By enhancing solid-state battery technology, his work supports the global transition away from fossil fuels and toward sustainable energy systems. His insights into electrolyte-material compatibility and electrode surface engineering are crucial to the development of next-generation batteries for electric vehicles and grid storage. Furthermore, his collaborative work with institutions like Shaanxi University of Science and Technology and Wenzhou University has allowed for wider dissemination and application of his findings. His technical expertise contributes not only to academic discourse but also to industrial product development, making him a key player in China’s evolving energy landscape.

🔮 LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Dr. Bi aims to lead pioneering research in high-energy-density and long-life solid-state batteries. He plans to expand on the mechanistic understanding of electrochemical degradation and develop smart, adaptive electrolytes that can self-heal and maintain ionic conductivity over extended lifecycles. His ambition is to build scalable material systems for commercial energy storage devices while maintaining a commitment to environmentally friendly synthesis processes. He envisions greater integration of AI-based modeling and material informatics into battery research. By nurturing interdisciplinary collaborations, publishing transformative research, and contributing to IP development, Dr. Bi seeks to leave a legacy defined by practical breakthroughs and sustainable innovation in material science.

NOTABLE PUBLICATIONS

Title: CoS₂ embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries
Authors: X. He, L. Bi, Y. Li, C. Xu, D. Lin
Journal: Electrochimica Acta 332, 135453 (2020)

Title: High energy storage density and discharging efficiency in La³⁺/Nb⁵⁺-co-substituted (Bi₀.₅Na₀.₅)₀.₉₄Ba₀.₀₆TiO₃ ceramics
Authors: Y. Yang, H. Wang, L. Bi, Q. Zheng, G. Fan, W. Jie, D. Lin
Journal: Journal of the European Ceramic Society 39 (10), 3051–3056 (2019)

Title: Enhanced Cycling Stability and Rate Capability in a La-Doped Na₃V₂(PO₄)₃/C Cathode for High-Performance Sodium Ion Batteries
Authors: L. Bi, X. Li, X. Liu, Q. Zheng, D. Lin
Journal: ACS Sustainable Chemistry & Engineering 7 (8), 7693–7699 (2019)

Title: Improving electrochemical performance of Na₃(VPO₄)₂O₂F cathode materials for sodium ion batteries by constructing conductive scaffold
Authors: L. Bi, Z. Miao, X. Li, Z. Song, Q. Zheng, D. Lin
Journal: Electrochimica Acta 337, 135816 (2020)

Title: Insight into accelerating polysulfides redox kinetics by BN@MXene heterostructure for Li–S batteries
Authors: Y. Song, P. Tang, Y. Wang, L. Bi, Q. Liang, Y. Yao, Y. Qiu, L. He, Q. Xie, P. Dong, et al.
Journal: Small 19 (38), 2302386 (2023)