Zihao Xing | Material Chemistry | Best Researcher Award

Assoc. Prof. Dr Zihao Xing | Material Chemistry | Best Researcher Award

Associate Professor, Northeast Normal University, China

Zihao Xing is an Associate Professor at the College of Chemistry, Northeast Normal University, China. His expertise spans electrocatalysis, fuel cells, and heterogeneous catalysis. He earned his Ph.D. in Physical Chemistry from Jilin University, where he developed innovative hydrogen energy conversion catalysts. As a postdoctoral researcher at Shenzhen University and a visiting scientist at TU Ilmenau, he worked on advanced electrocatalytic structures for energy applications. His research contributions have been widely recognized in high-impact journals, focusing on nanomaterials for sustainable energy. With numerous highly cited publications, he has significantly advanced oxygen reduction reaction (ORR) and battery electrocatalysis. His pioneering work in graphdiyne-based catalysts and metal-nanostructured materials has been instrumental in enhancing fuel cell efficiency. Xing’s research excellence has earned him recognition in the scientific community, further solidifying his role as a leading researcher in physical chemistry and sustainable energy materials.

PROFESSIONAL PROFILE

Google Scholar

Orcid

Scopus

STRENGTHS FOR THE AWARD

Zihao Xing demonstrates exceptional expertise in electrocatalysis, energy conversion materials, and fuel cells, with significant contributions to developing high-performance catalysts for sustainable energy applications. His extensive publication record, including works in Advanced Materials, Chemical Engineering Journal, and Nano Research, showcases his impact in the field, with high citation counts reflecting the recognition of his research by the scientific community. His international research experience, including collaborations with institutions in Germany and China, further strengthens his profile. Additionally, his work on nanostructured materials and electrocatalysis for energy applications highlights his innovative approach to solving critical challenges in energy storage and conversion.

AREAS FOR IMPROVEMENT

While Zihao Xing has an impressive research portfolio, expanding his leadership in large-scale funded projects and increasing collaborations with industry partners could further solidify his impact. Enhancing visibility through keynote speeches at international conferences and involvement in editorial or review boards of high-impact journals would also add to his recognition. Additionally, focusing on translating research into practical applications, such as patents or industrial partnerships, could strengthen his case for the Best Researcher Award.

EDUCATION

πŸŽ“ Ph.D. in Physical Chemistry (2013-2019) – Jilin University, China

  • Thesis: Rational Design and Activity Regulation of Hydrogen Energy Conversion Catalysts
  • Supervisor: Prof. Wensheng Yang
  • Exchange Student: State Key Laboratory of Organic Solids, ICCAS, Beijing

πŸŽ“ M.Sc. in Physical Chemistry (2013-2019) – Jilin University, China

  • Thesis: Structure Design of Nanostructured Graphdiyne Electrocatalysts

πŸŽ“ B.Sc. in Applied Chemistry (2009-2013) – Jilin University, China

  • Thesis: Synthesis of Precious Metal Nanoparticles and Carbon-Based Nanostructures

EXPERIENCE

πŸ‘¨β€πŸ« Associate Professor (2022-Present) – College of Chemistry, Northeast Normal University, China

  • Leading research in hydrogen-electric energy conversion catalysts

πŸ”¬ Postdoctoral Researcher (2019-2021) – Shenzhen University, China

  • Focused on designing highly active electrocatalysts for batteries
  • Supervisor: Prof. Chenliang Su

🌍 Visiting Scientist (2019-2021) – TU Ilmenau, Germany

  • Specialized in applied nanophysics and electrocatalysis
  • Supervisor: Prof. Yong Lei

AWARDS & HONORS

πŸ† Highly Cited Researcher Recognition – Multiple publications in high-impact journals
πŸ† Outstanding Young Scientist Award – Recognized for contributions to electrocatalysis
πŸ† Best Research Paper Award – Acknowledged for groundbreaking work in Zn-air batteries
πŸ† Postdoctoral Fellowship – Shenzhen University, China
πŸ† Academic Excellence Scholarship – Jilin University
πŸ† Visiting Scientist Grant – TU Ilmenau, Germany

RESEARCH FOCUS

πŸ”¬ Electrocatalysis & Energy Materials – Development of high-performance catalysts for fuel cells and batteries
⚑ Oxygen Reduction Reaction (ORR) & Hydrogen Evolution – Enhancing efficiency in sustainable energy conversion
πŸ§ͺ Nanostructured Materials – Engineering carbon-based and metal nanostructures for advanced applications
🌍 Graphdiyne-Based Catalysts – Designing novel materials for green energy solutions
πŸ”‹ Fuel Cells & Metal-Air Batteries – Improving performance and durability of energy storage devices

PUBLICATION TOP NOTES

πŸ“„ Preferentially Engineering FeN4 Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn–Air Batteries
πŸ“„ Sensitive Colorimetric Sensor for Point-of-Care Detection of Acetylcholinesterase Using Cobalt Oxyhydroxide Nanoflakes
πŸ“„ Self-Templating Construction of N, P-Co-Doped Carbon Nanosheets for Efficient Electrocatalytic Oxygen Reduction Reaction
πŸ“„ Stabilizing Single-Atomic Ruthenium by Ferrous Ion Doped NiFe-LDH Towards Highly Efficient and Sustained Water Oxidation
πŸ“„ Structure Engineering of PtCu3/C Catalyst from Disordered to Ordered Intermetallic Compound with Heat-Treatment for the Methanol Electrooxidation Reaction
πŸ“„ Optimizing the Activity of Pd-Based Catalysts Towards Room-Temperature Formic Acid Decomposition by Au Alloying
πŸ“„ Effect of Pt Cocatalyst on Visible Light Driven Hydrogen Evolution of Anthracene-Based Zirconium Metal-Organic Framework
πŸ“„ Colloidal Silica Assisted Fabrication of N, O, S-Tridoped Porous Carbon Nanosheets with Excellent Oxygen Reduction Performance
πŸ“„ Boosting the Methanol Oxidation Reaction Activity of Pt–Ru Clusters via Resonance Energy Transfer
πŸ“„ Bovine Serum Albumin Assisted Preparation of Ultra-Stable Gold Nanoflowers and Their Selective Raman Response to Charged Dyes
πŸ“„ Nanocomposite: Keggin-Type Co4-Polyoxometalate@Cobalt-Porphyrin Linked Graphdiyne for Hydrogen Evolution in Seawater
πŸ“„ Weak Interaction Between Cations and Anions in Electrolyte Enabling Fast Dual‐Ion Storage for Potassium‐Ion Hybrid Capacitors
πŸ“„ Hexavalent Iridium Boosts Oxygen Evolution Performance
πŸ“„ Disordered Carbon Structures Enhance Capacitive Storage
πŸ“„ Polyoxometalate as the Assembly Material to Self-Assembled Ni(OH)2 Nanosheets with Electrocatalytic Performance
πŸ“„ Ligand Engineering of Co-MOF-74 with Hexaaminotriphenylene for Enhanced Oxygen Reduction Reaction in Zinc-Air Batteries
πŸ“„ Rational Design of Amino-Functionalized Pillar-Layered Co6O6 Cluster MOF for Gas Purification in the MTO Process
πŸ“„ Pyridine-Nitrogen Conjugated Covalent Organic Frameworks for High-Efficiency Gas-Solid Photocatalytic Reduction of CO2 to CO
πŸ“„ Promoting Mechanism of the Ru-Integration Effect in RuCo Bimetallic Nanoparticles for Enhancing Water Splitting Performance
πŸ“„ Sulfur and Nitrogen Dual-Doped Graphdiyne as a Highly Efficient Metal-Free Electrocatalyst for the Zn-Air Battery

CONCLUSION

With a strong foundation in electrocatalysis, nanomaterials, and sustainable energy applications, Zihao Xing is highly suitable for the Best Researcher Award. His high-impact publications, collaborations with leading institutions, and contributions to cutting-edge research make him a strong candidate. By further expanding his leadership roles and industry collaborations, he can reinforce his standing as a leading researcher in the field.

Vikesh Gurudas Lade – Advanced Oxidation Processes – Best Researcher Award

Vikesh Gurudas Lade - Advanced Oxidation Processes - Best Researcher Award

Laxminarayan Innovation Technological University - India

AUTHOR PROFILE

Scopus

EARLY ACADEMIC PURSUITS

Vikesh Gurudas Lade embarked on his academic journey with a Ph.D. in Chemical Engineering from the Institute of Chemical Technology, Mumbai. His doctoral research focused on hydrodynamics and mass transfer studies in pulsed sieve-plate extraction columns and mixer-settler units, addressing challenges in the removal of tri n-butyl phosphate from nitric acid solutions. This collaborative work with institutions like BARC and IGCAR laid the foundation for his expertise in Advanced Oxidation Processes.

PROFESSIONAL ENDEAVORS

With over five years of industrial experience as an Assistant Manager in Process Engineering and Technology Transfer at Gujarat Flourochemicals Ltd., Vikesh played a pivotal role in various projects, from laboratory trials to technology transfer and commissioning of commercial projects. His responsibilities included process selection, engineering package preparation, and coordination with project teams, showcasing his proficiency in Wastewater Treatment and Process Development.

CONTRIBUTIONS AND RESEARCH FOCUS

Vikesh's research projects, including his current university-sanctioned project on process development for the synthesis of specialty/fine chemicals, underscore his commitment to advancing knowledge in Wastewater Treatment and Agro waste to Wealth conversion. His expertise in reactor design, scale-up, and process intensification has enabled him to contribute significantly to the development of novel technologies for environmental remediation and resource recovery.

IMPACT AND INFLUENCE

Through his industrial and academic roles, Vikesh has made substantial contributions to the field of chemical engineering. His involvement in commercial-scale projects, technology transfer, and teaching engagements has positioned him as a key influencer in areas such as Hydrodynamics and Mass Transfer and Separation and Purification Technology. His work has not only advanced scientific understanding but also facilitated practical solutions to real-world challenges.

ACADEMIC CITES

Vikesh's research publications and projects have garnered recognition within the academic community, reflecting the relevance and impact of his work. His contributions to understanding reactor design, process intensification, and wastewater treatment have been cited extensively, highlighting their significance in addressing contemporary environmental and industrial challenges.

LEGACY AND FUTURE CONTRIBUTIONS

As Vikesh continues to excel in his academic and professional endeavors, his legacy lies in his dedication to advancing knowledge and finding sustainable solutions to complex problems. His interdisciplinary expertise in Advanced Oxidation Processes, coupled with his commitment to teaching and mentoring, positions him as a catalyst for innovation in the fields of environmental engineering and chemical technology. Moving forward, his research endeavors are expected to yield further insights and technologies that will contribute to a cleaner and more sustainable future.

NOTABLE PUBLICATION

Review on integrated advanced oxidation processes for water and wastewater treatment 2024

Processes for the treatment of biomedical wastes: challenges and issues Β 2023

Responsive membranes for wastewater treatmentΒ  2021 (1)

Introduction of water remediation processes 2021 (3)

Removal of tributyl phosphate from aqueous stream in a pilot scale combined air-lift mixer-settler unit: Process intensification studies 2015 (12)

Prof. Nonhlangabezo Mabuba – Photocatalytic Materials – Excellence in Research

Prof. Nonhlangabezo Mabuba - Photocatalytic Materials - Excellence in Research

University of Johannesburg - South Africa

EARLY ACADEMIC PURSUITS

Prof. Nonhlangabezo (Bezo) Mabuba began her academic journey by obtaining a Master of Science degree in Water Science from Duisburg-Essen UniversitΓ€t, Germany, in 2007, followed by a Ph.D. in Natural Sciences from the same institution in collaboration with ThyssenKrupp Steel AG, Hamborn, Germany, in 2010. These early academic pursuits laid the foundation for her future contributions to the field of Analytical Chemistry, Material and Processing Science.

PROFESSIONAL ENDEAVORS

Prof. Mabuba's professional journey has been characterized by various roles in academia, research, and leadership. She currently serves as an Associate Professor in the Department of Chemical Sciences at the University of Johannesburg (UJ), where she also holds the position of Acting Deputy Dean in the Faculty of Science. Over the years, she has held key positions such as Senior Lecturer, Deputy Director for the Centre of Nanomaterial Science Research, and Deputy Head of the Department of Chemical Sciences for teaching and learning at UJ.

CONTRIBUTIONS AND RESEARCH FOCUS

Prof. Mabuba's research focuses on the development of Photocatalytic Materials for water quality monitoring and treatment. She supervises students in exploring innovative applications of nanomaterials in (bio)sensors, (bio)adsorbents, and piezocatalytic materials. Her research is dedicated to advancing methods for efficient and sustainable wastewater quality monitoring and treatment, aligning with global efforts towards environmental sustainability.

IMPACT AND INFLUENCE

Prof. Mabuba's international visibility in the scientific community is evidenced by her high H-index on Google Scholar and Scopus. Her research outputs have contributed significantly to the field of Analytical Chemistry and Nanomaterial Science, with implications for water treatment technologies and environmental conservation efforts.

ACADEMIC CITATIONS

Prof. Mabuba's research findings have been cited extensively, reflecting their impact and relevance in the scientific community. Her work has garnered attention from peers, researchers, and professionals in the field, further solidifying her reputation as a leading expert in Photocatalytic Materials and water treatment.

LEGACY AND FUTURE CONTRIBUTIONS

Prof. Mabuba's legacy lies in her continued dedication to research excellence, mentorship, and community development. Through her leadership roles, collaborative efforts, and academic contributions, she aims to inspire future generations of researchers and make lasting contributions to the field of Photocatalytic Materials and environmental science.

PHOTOCATALYTIC MATERIALS

Prof. Mabuba's research expertise and focus revolve around Photocatalytic Materials, which play a crucial role in water quality monitoring and treatment. By leveraging nanomaterials and innovative approaches, she aims to develop efficient and sustainable methods for addressing water pollution and ensuring access to clean water resources. Through her research, Prof. Mabuba contributes to advancements in environmental science and sustainable development, with implications for global health and well-being.

NOTABLE PUBLICATION

Design of New Schiff-Base Copper(II) Complexes: Synthesis, Crystal Structures, DFT Study, and Binding Potency toward Cytochrome P450 3A4.Β  2021 (78)

Coupling cathodic electro-fenton with anodic photo-electrochemical oxidation: A feasibility study on the mineralization of paracetamol.Β  2020 (68)