Qingliang Feng | Low dimensional materials | Best Researcher Award

Prof Qingliang Feng | Low dimensional materials | Best Researcher Award

Professor, Northwestern Polytechnical University, China

Qingliang Feng is a prominent researcher at Northwestern Polytechnical University in Xi’an, China. With a strong focus on materials science and optoelectronics, he has significantly contributed to the understanding and development of advanced semiconductor materials. His work is characterized by innovative approaches to enhancing the performance of electronic devices and energy storage solutions. Feng has published extensively, with over 70 articles and a citation count exceeding 5,900, showcasing his influence in the field. His research not only addresses fundamental scientific questions but also has practical implications for the development of next-generation electronic and optoelectronic devices.

Profile

Google Scholar

Scopus

Strengths for the Award

Qingliang Feng is an exceptional candidate for the Research for Best Researcher Award due to his substantial contributions to the field of materials science, particularly in the development of advanced semiconductor materials and optoelectronic devices. With an h-index of 35 and over 5,958 citations across 77 publications, his work demonstrates significant impact and recognition within the scientific community. Feng’s research has led to innovations in energy storage systems, photodetectors, and flexible electronics, reflecting both depth and breadth in his expertise. His ability to lead collaborative projects and mentor emerging researchers further enhances his qualifications for this award.

Areas for Improvement

While Dr. Feng has established a solid reputation in his field, there are areas for potential growth. Expanding his focus to include interdisciplinary collaborations could enhance the applicability of his research outcomes. Additionally, increasing public engagement and communication of his work to broader audiences could elevate his profile and impact beyond academia. Fostering partnerships with industry could also lead to practical applications of his research, aligning with the growing emphasis on translating scientific discoveries into real-world solutions.

Education

Qingliang Feng completed his undergraduate studies in Physics at a prestigious university in China, where he developed a solid foundation in material science. He then pursued his Master’s degree in Materials Science and Engineering, focusing on semiconductor materials. Following this, he obtained his Ph.D. in Materials Science, specializing in nanostructured materials and their applications in electronic devices. His educational background has provided him with the theoretical knowledge and practical skills necessary to excel in research and development in the rapidly evolving field of materials science.

Experience

Dr. Feng has extensive experience in both academia and research institutions. He began his career as a postdoctoral researcher, where he worked on various projects related to semiconductor fabrication and characterization. His role involved collaborating with multidisciplinary teams to explore innovative solutions for improving device performance. At Northwestern Polytechnical University, he has taken on various responsibilities, including supervising graduate students and leading research projects. His experience encompasses a range of topics, from nanomaterials to optoelectronic devices, and he has played a key role in establishing partnerships with industry stakeholders.

Awards and Honors

Dr. Feng has received several prestigious awards in recognition of his contributions to materials science and engineering. He was honored with the Outstanding Researcher Award at Northwestern Polytechnical University, which acknowledges his significant impact on the field. Additionally, he has been recognized for his innovative research with the National Science and Technology Progress Award in China. His work has not only advanced scientific knowledge but has also contributed to practical applications, earning him accolades from both academic and industrial sectors.

Research Focus

Qingliang Feng’s research focuses on the development and characterization of advanced semiconductor materials for electronic and optoelectronic applications. His interests include two-dimensional materials, organic-inorganic hybrids, and their applications in photodetectors, energy storage devices, and flexible electronics. He is particularly focused on improving device efficiency and performance through novel material synthesis and processing techniques. Feng’s work aims to bridge the gap between fundamental science and practical technology, contributing to the advancement of sustainable energy solutions and next-generation electronic devices.

Publication Top Notes

  1. All-Covalent Organic Framework Nanofilms Assembled Lithium-Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics 🔋
  2. Solution-Processable Large-Area Black Phosphorus/Reduced Graphene Oxide Schottky Junction for High-Temperature Broadband Photodetectors 🌡️
  3. Two-Dimensional Optoelectronic Memristive Device Realized by Ferroelectric Regulation 💡
  4. Modulating the Electronic Structure of VS2 via Ru Decoration for an Efficient pH-Universal Electrocatalytic Hydrogen Evolution Reaction 🔧
  5. Controlled Growth of Single-Crystalline 2D p-Type Semiconductor α-MnSe for Broadband Photodetector 📷
  6. Composition-Triggered Growth of Monolayer MoTe2(1−x)S2x Alloys with Coherent Phase Interfaces for High-Performance Broadband Photodetection 🔬
  7. High-Responsivity Self-Powered Deep-Ultraviolet Photodetector Based on n-SnS2/p-GaN Heterostructures 🔦
  8. Resolidified Chalcogen-Assisted Growth of Bilayer Semiconductors with Controlled Stacking Orders 📈
  9. Solution-Processed Black Phosphorus Film-Based Volatile Memristor for Encryption Applications 🔒
  10. Bending Resistance Covalent Organic Framework Superlattice: “Nano-Hourglass”-Induced Charge Accumulation for Flexible In-Plane Micro-Supercapacitors 📏

Conclusion

In conclusion, Qingliang Feng’s exemplary research contributions, coupled with his potential for growth in outreach and interdisciplinary collaboration, position him as a strong contender for the Research for Best Researcher Award. His continued commitment to advancing materials science and promoting innovative applications holds promise for significant future contributions to both academic and practical domains. Recognizing his efforts with this award would not only honor his achievements but also encourage further excellence in research within his field.

Roshan Khadka – Materials Science and Engineering – Best Researcher Award

Roshan Khadka - Materials Science and Engineering - Best Researcher Award

Plant and Food Research - New Zealand

AUTHOR PROFILE

SCOPUS

🎓 ACADEMIC EXCELLENCE IN CHEMICAL SCIENCE AND MATERIALS ENGINEERING

Roshan Khadka holds a PhD in Chemical Science from the University of Auckland, New Zealand (2019), with a thesis focused on the development of insect olfactory receptor-based biosensors. His academic journey includes a Master’s degree in Advanced Material Engineering from Kongju National University, South Korea (2015), where he studied the enhancement of optoelectrical properties of PEDOT-based thin films, and a Bachelor’s degree in Mechanical Engineering from Kathmandu University, Nepal (2012).

🔬 LEADING RESEARCHER IN MATERIALS SCIENCE AND BIOSENSORS

Currently, Roshan Khadka is an Associate Investigator at The MacDiarmid Institute for Advanced Materials and Nanotechnology and a Scientist at The New Zealand Institute for Plant and Food Research Limited. His work primarily involves the development and application of advanced materials, including biocompatible supercapacitors and conductive polymers for sensor applications. His role is crucial in advancing the frontiers of material science and its practical applications.

🧪 EXPERT IN CONDUCTIVE POLYMERS AND SENSOR TECHNOLOGIES

Roshan's research expertise extends to the development of hybrid conductive polymers and strain sensors, as evidenced by his contributions to publications such as the New Journal of Chemistry and ACS Applied Polymer Materials. His work on enhancing vapor phase hybridized polymers and graphene oxide-based materials highlights his innovative approach to improving sensor performance and material durability.

🔍 PIONEER IN BIOSENSOR TECHNOLOGIES AND INSECT OLFACTORY RECEPTORS

A significant part of Roshan Khadka’s research focuses on biosensors utilizing insect olfactory receptors. His studies have led to advancements in electrochemical detection of odorant compounds, demonstrated in journals like Sensors and Actuators B: Chemical and Biosensors and Bioelectronics. His work aims to create highly sensitive and specific detection systems, contributing to both scientific knowledge and practical applications.

📝 AUTHOR OF HIGH-IMPACT SCIENTIFIC PUBLICATIONS

Roshan has authored several influential papers on topics such as ammonia sensing and electrochemical stability in bioelectronic systems. His publications in journals such as Polymer and Rsc Advances showcase his contributions to the development of innovative materials and sensors, reflecting his commitment to advancing the field of materials science.

🌍 DEDICATED TO GLOBAL RESEARCH AND COLLABORATION

Throughout his career, Roshan Khadka has engaged in international research collaborations and held various roles, including post-doctoral scientist and project assistant. His experience spans multiple countries and institutions, reflecting his dedication to global scientific advancement and interdisciplinary research.

🎓 ACADEMIC TEACHING AND SUPERVISION EXPERIENCE

In addition to his research, Roshan has gained valuable experience as a Graduate Teaching Assistant and Examination Supervisor at the University of Auckland. His role in academic instruction and supervision underscores his commitment to education and mentorship within the scientific community.

NOTABLE PUBLICATION

A comparative study between vapor phase polymerized PPy and PEDOT - Thermoplastic polyurethane composites for ammonia sensing
Authors: F.D.M. Fernandez, R. Khadka, J.-H. Yim
Journal: Polymer
Year: 2021

Insect odorant receptor nanodiscs for sensitive and specific electrochemical detection of odorant compounds
Authors: J.A. Cheema, N. Aydemir, C. Carraher, A. Kralicek, J. Travas-Sejdic
Journal: Sensors and Actuators, B: Chemical
Year: 2021

Highly porous, soft, and flexible vapor-phase polymerized polypyrrole-styrene-ethylene-butylene-styrene hybrid scaffold as ammonia and strain sensor
Authors: F.D.M. Fernandez, R. Khadka, J.-H. Yim
Journal: RSC Advances
Year: 2020

Role of polyethylene oxide content in polypyrrole linear actuators
Authors: R. Khadka, P. Zhang, N. Tuan Nguyen, T.F. Otero, R. Kiefer
Journal: Materials Today Communications
Year: 2020

Synergistic improvement in the performance of insect odorant receptor based biosensors in the presence of Orco
Authors: R. Khadka, C. Carraher, C. Hamiaux, J. Travas-Sejdic, A. Kralicek
Journal: Biosensors and Bioelectronics
Year: 2020