Wioletta Raczkiewicz – Materials Science and Engineering – Best Researcher Award

Wioletta Raczkiewicz - Materials Science and Engineering - Best Researcher Award

Kielce University of Technology - Poland

AUTHOR PROFILE

SCOPUS
GOOGLE SCHOLAR
ORCID

SUMMARY

Wioletta Raczkiewicz is a civil engineering expert with extensive academic and professional engagement in concrete structures, building renovation, and historic building conservation. With nearly three decades of involvement in technical education and structural research, the profile is marked by progressive academic roles at Kielce University of Technology. Key contributions include the development of stochastic models for fiber-reinforced concrete and ongoing dedication to educational and architectural engineering excellence. Current responsibilities as Associate Professor include teaching, mentoring, and research leadership in advanced concrete technologies and structural diagnostics.

EDUCATION

Earned a Master of Engineering in Civil Engineering in 1994 from Kielce University of Technology, with a specialization in Building Renovations and Historic Conservation. The thesis focused on adaptive reconstruction of Villa Zielona into a guesthouse. In 2008, completed a Doctor of Technical Sciences degree in Civil Engineering, specializing in Concrete Structures. The doctoral dissertation investigated stochastic parameter distributions in fiber-reinforced concrete under variable loading, reflecting a high level of analytical and modeling capability within modern structural engineering contexts.

PROFESSIONAL EXPERIENCE

Began professional career in 1995 at the Research Institute of Roads and Bridges in Warsaw, Kielce branch, as a technologist. Continued academic work at Kielce University of Technology from 1997 onward across multiple faculty transformations, evolving from early technical roles to current designation as Associate Professor since December 2023. Over the years, responsibilities have included curriculum development, scientific research, and faculty service. Academic progression reflects long-term contributions in concrete technology, civil infrastructure diagnostics, and the integration of historic and modern construction methods.

RESEARCH INTEREST

Focus areas include fiber-reinforced concrete behavior under variable loads, stochastic modeling in structural engineering, diagnostics of construction materials, and conservation technologies for historical buildings. Interested in the development of innovative rehabilitation solutions and structural assessments through computational and empirical approaches. Emphasizes interdisciplinary integration between modern construction science and architectural heritage preservation. Research aims at improving reliability and sustainability of concrete structures while advancing methodologies in structural health monitoring and damage prediction under real-world operational conditions.

AWARD AND HONOR

Recognized within institutional settings for consistent academic performance and contributions to structural engineering research. While no international honors are explicitly listed, appointment to Associate Professor reflects institutional acknowledgment of scholarly merit and educational impact. Continued involvement in faculty development and mentoring underscores professional credibility and recognition within the academic engineering community. Contributions to doctoral supervision and peer-reviewed scientific work further illustrate recognition and trust in research excellence and educational leadership in civil engineering.

RESEARCH SKILL

Possesses advanced capabilities in stochastic modeling, finite element analysis, material diagnostics, and structural assessment techniques. Proficient in the application of probabilistic methods to evaluate concrete behavior under stress conditions. Skilled in developing interdisciplinary projects involving historic building technologies and sustainable construction practices. Demonstrates technical proficiency in laboratory methods for testing fiber-reinforced composites and interpreting complex data sets for real-world engineering applications. Also experienced in supervising engineering theses and managing collaborative academic research projects with a focus on reliability and material performance.

PUBLICATIONS TOP NOTED

Authored several technical publications in the field of concrete structures and structural modeling. Focus areas in these works include reliability assessment of fiber-reinforced materials and diagnostic techniques in civil engineering structures. Publications contribute to ongoing discourse in probabilistic evaluation of construction materials and are regularly cited within specialized journals of civil engineering and materials science. Key works also address structural behavior under dynamic and cyclic loads, further emphasizing expertise in advanced analysis of concrete and historical restoration frameworks.

Title: Reinforcement corrosion testing in concrete and fiber reinforced concrete specimens exposed to aggressive external factors
Authors: W. Raczkiewicz, M. Bacharz, K. Bacharz, M. Teodorczyk
Journal: Materials

Title: Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies
Authors: A. Czajkowska, W. Raczkiewicz, M. Ingaldi
Journal: Production Engineering Archives

Title: Innovative strengthening of RC columns using a layer of a fibre reinforced concrete
Authors: P. Koteš, M. Vavruš, W. Raczkiewicz
Journal: Acta Polytechnica CTU Proceedings

Title: Temperature impact on the assessment of reinforcement corrosion risk in concrete by galvanostatic pulse method
Authors: W. Raczkiewicz, A. Wojcicki
Journal: Applied Sciences

Title: Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes
Author: W. Raczkiewicz
Journal: Science and Engineering of Composite Materials

CONCLUSION

Wioletta Raczkiewicz exemplifies scholarly excellence in civil engineering, particularly in structural analysis and building conservation. The academic and research trajectory demonstrates a commitment to combining theoretical modeling with practical engineering applications. Contributions to educational development, research innovation, and technical diagnostics reinforce a leadership position within the field. With a stable academic tenure and impactful scientific output, the profile remains a valuable asset to structural engineering advancement, especially in concrete technologies and heritage restoration methodologies.

Weiwei Zhang – Materials Science and Engineering – Best Researcher Award

Weiwei Zhang - Materials Science and Engineering - Best Researcher Award

Heze University - China

AUTHOR PROFILE

SCOPUS

🧪 RESEARCH THEMES

Dr. Weiwei Zhang’s core research themes include nanocomposite flame retardancy, interpenetrating polymer networks, polysilsesquioxane-based reinforcement systems, and smart polymer design. Her mission is to create safer, smarter, and more sustainable materials through the innovative integration of polymer science, thermal chemistry, and structural engineering. With a passion for both scientific discovery and practical application, her work seeks to enhance safety performance across industries while promoting greener chemical practices. Dr. Zhang continues to push the boundaries of material science to meet the challenges of the modern world.

🎓 EARLY ACADEMIC PURSUITS

Dr. Weiwei Zhang’s academic journey began with a strong foundation in chemical engineering at Qingdao University, where she completed both her bachelor’s and master’s degrees. She further advanced her expertise by earning a Ph.D. in Materials Science from the Beijing Institute of Technology. Throughout her studies, she consistently ranked among the top students, earning prestigious honors such as Outstanding Doctoral Graduate and the Outstanding Dissertation Award. Her early research included fundamental studies on polysaccharide fibers and advanced flame-retardant composites, which set the stage for her deeper investigations into functional polymers and nanocomposites. These experiences not only shaped her scientific outlook but also sparked a long-term passion for addressing material challenges in safety and sustainability through innovative research in flame-retardant systems and structural materials.

🧑‍🏫 PROFESSIONAL ENDEAVORS

Since January 2022, Dr. Zhang has served as an Associate Professor at the School of Chemistry and Chemical Engineering, Heze University. Her appointment came through the university’s prestigious “Outstanding Doctoral Talent Introduction Program,” which recognizes exceptional young researchers. In this role, she has been instrumental in fostering advanced research programs while mentoring students in polymer and composite material sciences. She balances teaching with research leadership, having secured internal and provincial grants. Her integration into the university has helped establish a robust research environment in material engineering and nanotechnology. Dr. Zhang has also contributed to cross-disciplinary collaborations within the institution, further advancing the university’s profile in applied materials research and sustainable chemical engineering practices.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Zhang's research is centered on functional polymer materials, high-performance composites, and flame-retardant systems. She has explored advanced synthesis methods for silsesquioxane-based nanomaterials and their applications in vinyl ester and epoxy resin systems. Her work integrates experimental investigations with molecular dynamic simulations to uncover structure-property relationships, particularly focusing on mechanical reinforcement, thermal stability, and fire resistance. Her studies on interpenetrating polymer networks, polyhedral oligomeric silsesquioxanes (POSS), and biodegradable fiber spinning techniques provide practical solutions for industries that require materials with superior flame retardancy and durability. These contributions are particularly relevant in the context of safer construction materials, aerospace composites, and sustainable product design.

🏅 ACCOLADES AND RECOGNITION

Dr. Zhang has been consistently recognized for her scientific excellence. During her Ph.D., she was awarded the Outstanding Doctoral Graduate and received multiple first-class scholarships in acknowledgment of her academic and research performance. Her papers have been published in high-impact journals such as Composites Part A & B, Polymer Degradation and Stability, and Journal of Materials Science. Her publication record showcases her dedication to both scientific rigor and real-world application. In recognition of her growing expertise, she has been granted research funding from the Shandong Provincial Natural Science Foundation, highlighting her emerging leadership in flame-retardant material innovation and her ability to compete at both institutional and provincial levels.

🌍 IMPACT AND INFLUENCE

Through her extensive research on flame-retardant nanocomposites, Dr. Zhang is contributing to safer, more sustainable material technologies. Her work on PMPOSS-modified polymers and POSS-reinforced composites has potential applications in transportation, electronics, and construction sectors that demand high-performance and flame-resistant materials. Her findings on transparency, mechanical integrity, and low-smoke emission properties influence both industrial manufacturing processes and safety standards. She continues to collaborate with leading materials scientists across China, further integrating her research into national material innovation strategies. As a teacher and mentor, she is also shaping future chemists and engineers, extending her influence beyond the lab and into future generations of researchers.

🔮 LEGACY AND FUTURE CONTRIBUTIONS

Dr. Zhang aims to establish herself as a leading voice in flame-retardant and multifunctional material development. Her vision includes the integration of eco-friendly flame retardants, biodegradable polymer systems, and advanced fabrication techniques that reduce carbon footprint. In the future, she intends to pursue further interdisciplinary collaborations—merging polymer chemistry with environmental engineering and nanoscience. By expanding on the mechanisms behind flame suppression and thermal resistance, she hopes to contribute foundational knowledge that can be applied to a broad array of safety-critical industries. Through teaching, publishing, and research leadership, she is building a legacy rooted in material innovation and academic excellence.

NOTABLE PUBLICATIONS

Facile synthesis of polyhedral oligomeric silsesquioxanes with excellent thermosetting, fibrous and crystalline properties

Authors: W. Zhang (Weiwei), Y. Niu (Yukuan), W. Zhang (Wenchao), R. Yang (Rongjie)
Journal: European Polymer Journal, 2024

Analysis on the caged structure of polyhedral oligomeric dodecaphenyl silsesquioxane and its condensation mechanism

Authors: D. Zhang (Donglin), H. Zhou (Hailian), R. Yang (Rongjie), W. Zhang (Weiwei), L. Li (Lamei)
Journal: Journal of Molecular Structure, 2023