Tarek Ahasan | Photocatalytic Water Splitting for Hydrogen Production | Best Researcher Award

Mr Tarek Ahasan | Photocatalytic Water Splitting for Hydrogen Production | Best Researcher Award

Graduate Research Assistant, New Mexico State University, United States

Tarek Ahasan is an accomplished Ph.D. candidate in Environmental Engineering at New Mexico State University, specializing in sustainable energy and water treatment technologies. With a strong academic foundation, including dual master’s degrees in Environmental Engineering and Environmental Science, Tarek focuses on innovative solutions for green hydrogen production and advanced water desalination. His research integrates photocatalysis and electromagnetic field applications to address global energy and water security challenges. Recognized for his contributions, Tarek has received prestigious awards, published in high-impact journals, and filed a patent for his groundbreaking work in photocatalytic systems. He is an active member of professional organizations and a leader in academic communities, dedicated to advancing sustainable technologies for a decarbonized future.

Professional Profile

Orcid

Scopus

Education 🎓

Tarek Ahasan is pursuing a Ph.D. in Environmental Engineering at New Mexico State University (NMSU), expected to graduate in Fall 2025, with a concurrent Master of Science in Environmental Engineering (CGPA: 4.00/4.00). He holds a Master of Science in Environmental Science (CGPA: 3.92/4.00) and a Bachelor of Science in Soil, Water, and Environment (CGPA: 3.57/4.00) from the University of Dhaka, Bangladesh. His academic journey reflects a strong focus on sustainable energy, water treatment, and environmental systems, equipping him with the expertise to drive innovative research in green technologies.

Experience 🔬

As a Graduate Research Assistant at NMSU, Tarek has led groundbreaking projects on photocatalytic hydrogen production and electromagnetic field-enhanced desalination. He developed a novel Ag-G-TiO2 nanocomposite photocatalyst, achieving 97% dye degradation efficiency and 191 μmoles g⁻¹ h⁻¹ hydrogen production. Additionally, he optimized electromagnetic field pretreatment for membrane scaling control, achieving 51.3% water recovery. Previously, at the University of Dhaka, he advanced sustainable coagulation techniques for dye effluent treatment and conducted nationwide soil health assessments to address climate change impacts on agriculture. His work bridges research and practical applications, contributing to global sustainability goals.

Awards and Honors 🏆

Tarek has been recognized with multiple awards, including the 2023-2024 New Mexico Water Resources Research Institute (NM WRRI) student grant and the National Science and Technology Fellowship (2019-20) from the Government of Bangladesh. He earned Second Place for Outstanding Poster Presentation at the 20th Annual RMSAWWA/RMWEA Student Conference (2024) and the Texas Desal Annual Conference (2023). His research has been featured in the NMWRRI Online Newsletter, highlighting his contributions to sustainable energy and water technologies.

Research Focus 🔍

Tarek’s research centers on developing sustainable alternatives to fossil fuels, focusing on green hydrogen production through advanced photocatalysis and innovative water treatment technologies. His work includes synthesizing nanocomposite photocatalysts for visible light-driven hydrogen production and optimizing electromagnetic field applications for membrane scaling control in desalination. By integrating renewable energy systems with water security solutions, Tarek aims to address global decarbonization and resource sustainability challenges, contributing to a cleaner, more resilient future.

Publication Top Notes 📚

  1. Ahasan, T., Xu, P., & Wang, H. (2024). Dual-Function Photocatalysis in the Visible Spectrum: Ag-G-TiO2 for Simultaneous Dye Wastewater Degradation and Hydrogen Production. Catalysts, 14(8), 530.
  2. Ahasan, T., Edirisooriya, E. M. N. T., Senanayake, P. S., Xu, P., & Wang, H. (2025). Advanced TiO2-Based Photocatalytic Systems for Water Splitting: Comprehensive Review from Fundamentals to Manufacturing. Molecules, 30(5), 1127.
  3. Du, X., Perera, H., Ahasan, T., Wang, Y., Shu, F., Wang, H., Yuan, K., Anovitz, L. M., Ben Ishai, P., & Xu, P. (2025). Mechanisms of Electromagnetic Field Control on Mineral Scaling in Brackish Water Reverse Osmosis: Combined Homogenous and Heterogeneous Nucleation. Separation and Purification Technology, 355(B), 129630.

Conclusion 🌍

Tarek Ahasan is a visionary researcher dedicated to advancing sustainable energy and water treatment technologies. Through his innovative work in photocatalysis and desalination, he is paving the way for a greener, more sustainable future. His achievements in research, publications, and professional recognition underscore his commitment to addressing global energy and water challenges. Tarek’s contributions exemplify the transformative potential of environmental engineering in achieving decarbonization and resource security.

 

CENKER AKTEMUR | Energy | Best Researcher Award

Assist. Prof. Dr CENKER AKTEMUR | Energy | Best Researcher Award

Assistant Professor, Sivas University of Science and Technology, Turkey

Asst. Prof. Dr. Cenker Aktemur is a distinguished academic in Mechanical Engineering, specializing in thermodynamics, refrigeration systems, energy storage, and renewable energy. He completed his PhD at Kocaeli University, focusing on solar-assisted absorption and vapor compression cascade refrigeration systems. Dr. Aktemur’s extensive academic journey includes earning his MSc and BSc from Eastern Mediterranean University. Currently, he serves as an Assistant Professor at Sivas University of Science and Technology. Dr. Aktemur has an impressive publication record with notable works in energy analysis and optimization, showcasing his dedication to sustainability and energy efficiency.

PROFESSIONAL PROFILE

Google Scholar

Orcid

Scopus

STRENGTHS FOR THE AWARDS

  1. Extensive Academic Background
    • PhD in Mechanical Engineering with a focus on thermodynamics and renewable energy at Kocaeli University, supported by a prestigious scholarship under CoHE’s 100/2000 Program.
    • Master’s and Bachelor’s degrees in Mechanical Engineering, demonstrating a robust foundation in the field and fluency in English as the medium of education.
  2. Research Excellence
    • Published extensively in high-impact journals, covering topics like energy systems, thermodynamics, and renewable energy technologies.
    • Citations reflect strong contributions to refrigeration, thermal management, and sustainable energy systems, with notable works like:
      • Energy and exergy analysis of environmentally friendly refrigerants.
      • Optimization studies for insulation and energy savings.
  3. Professional Experience
    • Current role as an Assistant Professor at Sivas University of Science and Technology, leading research and academic initiatives.
    • Previous industrial experience as an R&D Engineer at CMAK Crane Systems, adding a practical dimension to theoretical expertise.
  4. Recognition and Awards
    • Scholarships for both undergraduate and graduate studies.
    • Consistent academic excellence, highlighted by Certificates of Honor and High Honor during undergraduate education.
  5. Interdisciplinary Focus
    • Expertise spans thermodynamics, refrigeration, solar energy, energy storage, and energy management, making a versatile and impactful researcher.

AREAS FOR IMPROVEMENT

  1. Collaboration and Visibility
    • Expanding international collaborations can increase the global visibility of research and diversify perspectives.
    • More active participation in international conferences and symposia to enhance networking opportunities.
  2. Grant Acquisition and Projects
    • Leadership in obtaining competitive research grants could further validate the impact and applicability of research.
    • Initiating or leading large-scale projects on renewable energy systems would strengthen professional credentials.
  3. Broader Dissemination
    • While publications are numerous, outreach through public lectures, workshops, or policy recommendations could amplify the societal impact of research.

EDUCATION

🎓 PhD in Mechanical Engineering – Kocaeli University (2018-2023)

  • Dissertation: Thermodynamic Performance Enhancement of Solar-Assisted Absorption and Vapor Compression Cascade Refrigeration Cycle
    🎓 MSc in Mechanical Engineering – Eastern Mediterranean University (2015-2017)
  • Thesis: Energy and Economic Analyses of Natural Gas Heating Systems
    🎓 BSc in Mechanical Engineering – Eastern Mediterranean University (2010-2015)
  • Capstone Project: Design and Manufacturing of Reverse Shoulder Prosthesis

EXPERIENCE

💼 Assistant Professor – Sivas University of Science and Technology (2024–Present)
💼 R&D Engineer – CMAK Crane Systems (2023-2024)

AWARDS AND HONORS

🏆 PhD Scholarship from CoHE 100/2000 Program (2018-2022)
🏆 MSc Scholarship (100%) and BSc Scholarship (50%) (2010-2017)
🏆 Certificates of Honor and High Honor during Undergraduate Studies (2011-2015)

RESEARCH FOCUS

🔬 Thermodynamic optimization of refrigeration systems
🔬 Renewable energy integration with advanced energy storage
🔬 Energy management and efficiency
🔬 Sustainable thermodynamic cycles

PUBLICATION TOP NOTES

  • Comparative energy and exergy analysis of a subcritical cascade refrigeration system using low global warming potential refrigerants 🌍
  • Optimum insulation thickness for the exterior walls of buildings in Turkey 🏠
  • Energy and exergy analysis of a subcritical cascade refrigeration system with internal heat exchangers ♻️
  • Thermodynamic performance enhancement of booster-assisted ejector expansion refrigeration systems 🌞
  • An overview of natural gas as an energy source for various purposes 🔥
  • Thermodynamic optimization of booster-ejector vapor compression refrigeration systems with R152a/Cu nano-refrigerant 🌱
  • A comparison of optimization techniques for energy systems design 🤖
  • Determination of optimum insulation thicknesses for Turkey’s climate regions 🌐
  • Optimization on the thermal insulation layer thickness in buildings 📐
  • Estimation of heating energy requirement and fuel consumption in prototype buildings 🏢
  • Optimizing insulation thickness based on wall orientations 🌅
  • Thermodynamic optimization of LiBr+LiCl/H2O absorption chillers 🌡️
  • Advanced exergy approaches on R41/R1233ZD cascade refrigeration systems 🧪
  • Energetic analysis of solar-driven absorption refrigeration systems ☀️
  • Integrated ORC-VCR system assessment 🔧
  • Overview of trigeneration systems 📊

CONCLUSION

Cenker Aktemur demonstrates a remarkable combination of academic rigor, research productivity, and professional expertise. His work in thermodynamic performance optimization and energy-efficient systems addresses critical global challenges in energy sustainability. While opportunities exist to broaden his influence through collaborations and leadership in large-scale projects, his accomplishments and trajectory strongly position him as a deserving candidate for the Best Researcher Award.

Jung-Chang Wang | Green Energy Technology | Best Researcher Award

Prof. Dr Jung-Chang Wang | Green Energy Technology | Best Researcher Award

Associate Vice President of RD, National Taiwan Ocean Univeristy (NTOU), Taiwan

Dr. Jung-Chang Wang is a distinguished Professor at the Department of Marine Engineering, National Taiwan Ocean University (NTOU). With a Ph.D. in Mechanical Engineering from National Taiwan University, his expertise spans thermal performance, heat transfer, and thermoelectric applications. He has served as Chairman of the Department of Marine Engineering and currently holds the position of Associate Vice President for Research & Development at NTOU. With over 1,100 citations, an h-index of 17, and 62 published works, Dr. Wang has contributed significantly to his field through research on advanced thermal management and energy-efficient systems.

PROFESSIONAL PROFILE

Orcid

Scopus

STRENGTHS FOR THE AWARD

  1. Academic Background:
    • Ph.D. in Mechanical Engineering from National Taiwan University (2007), a prestigious institution.
    • Two additional degrees (M.S. and B.S.) in Mechanical Engineering from National Cheng Kung University, showcasing a solid foundation in the field.
  2. Research Contributions:
    • Publication Record: 62 documents, including journal articles and conference papers, with significant contributions to heat transfer, thermoelectric nanofluids, thermal management, and energy systems.
    • Citations: Over 1,100 citations and an h-index of 17, reflecting the impact and relevance of his research in the academic community.
    • Collaborations: 42 co-authors and involvement in interdisciplinary projects, indicating a wide network and collaborative spirit.
    • Recent impactful research on hybrid thermoelectric nanofluids and piezo actuators, which are innovative areas in mechanical and marine engineering.
  3. Leadership and Professional Roles:
    • Served as a Chairman (2020–2023) and Professor at the Department of Marine Engineering, National Taiwan Ocean University.
    • Currently serving as an Associate Vice President for Research & Development, highlighting his leadership and administrative capabilities in fostering academic and research growth.
  4. Diverse Research Areas:
    • Expertise in advanced thermal management systems, thermoelectric devices, polymeric methodologies for fuel cells, and marine engineering.
    • Contributions to environmentally sustainable technologies like water quality assessment and solid oxide fuel cells.
  5. Innovative Impact:
    • Focus on practical applications of mechanical engineering principles, such as thermal performance, energy storage, and cooling systems for electronic devices, aligning with global sustainability goals.

AREAS FOR IMPROVEMENTS

  1. Diversity of Metrics:
    • While the h-index and citation count are commendable, increasing participation in high-impact journals and securing patents could further establish a robust research profile.
  2. Grant Acquisition:
    • No specific mention of awarded grants; obtaining high-profile research funding would strengthen his case for the Best Researcher Award.
  3. Outreach and Engagement:
    • Greater involvement in organizing international conferences, workshops, or public outreach activities could showcase his contributions beyond academic publications.
  4. Global Recognition:
    • Expanding research collaborations internationally and participating in global initiatives would enhance his visibility in the broader research community.

Here is the formatted content based on the provided information:

EDUCATION

🎓 Ph.D. in Mechanical Engineering, National Taiwan University (2007): Dissertation focused on two-phase thermal module performance.
🎓 M.S. in Mechanical Engineering, National Cheng Kung University (1997): Research on heat transfer coefficients for plate-tubed heat exchangers.
🎓 B.S. in Mechanical Engineering, National Cheng Kung University (1995).

EXPERIENCE

💼 Professor, Department of Marine Engineering, NTOU (2014–Present).
💼 Associate Vice President, Research & Development, NTOU (2024–2025).
💼 Chairman, Department of Marine Engineering, NTOU (2020–2023).
💼 Associate Professor, NTOU (2011–2014).
💼 Assistant Professor, NTOU (2008–2011).

AWARDS AND HONORS

🏅 Best Research Paper Award, National Taiwan Ocean University.
🏅 Academic Excellence Award, Taiwan Engineering Association.
🏅 Teaching Excellence Award, NTOU Department of Marine Engineering.
🏅 Reviewer Recognition, Scopus & Polymers Journal.

RESEARCH FOCUS

🔬 Thermal management and energy systems.
🌊 Marine engineering innovations and sustainable energy applications.
🧪 Hybrid thermoelectric nanofluids and piezoelectric cooling systems.
⚡ Solid oxide fuel cells using novel core-shell electrodes.
🌱 Renewable energy storage and thermoelectric conversion efficiency.

PUBLICATION TOP NOTES

📄 Properties Related to the HLB Value of Hybrid Thermoelectric Nanofluids at Different Temperatures.
📄 Cooling Performance Analysis for Mobile Vehicles by Thermal Resistance Network.
📄 Investigation of Thermal Management and Control System of Lithium-Ion Battery.
📄 Investigations on Five PMMA Closed Types of Piezo Actuators as a Cooling Fan.
📄 Investigations on Temperatures of the Flat Insert Mold Cavity Using VCRHCS.
📄 Water Quality Assessment of Keelung Port.
📄 Design and Testing of a Bearingless Piezo Jet Micro Heatsink.
📄 An Overview on Novel Core-Shell Electrodes for Solid Oxide Fuel Cells.
📄 PMMA Application in Piezo Actuation Jet for Heat Dissipation.
📄 Estimations on Properties of Redox Reactions to Electrical Energy Storage.

CONCLUSION

Professor Wang Jung-Chang is highly suitable for the Best Researcher Award due to his exceptional academic achievements, impactful research contributions, and leadership roles in academia. His focus on cutting-edge technologies and sustainability reflects a forward-thinking approach that aligns with modern research priorities. By strengthening his global collaborations, securing high-profile grants, and expanding his research impact further, he could solidify his standing as a leading researcher in his field.

POOJA CHAUDHARY | RENEWABLE ENERGY SOLAR CELL | Best Researcher Award

Ms. POOJA CHAUDHARY | RENEWABLE ENERGY SOLAR CELL | Best Researcher Award

RESEARCH SCHOLAR,Madan Mohan Malaviya Engineering College: Madan Mohan Malaviya University of Technology, India

Pooja Chaudhary is an enthusiastic and dedicated researcher in the field of Electronics Engineering with a focus on VLSI Design and Communication Engineering. Currently pursuing her Ph.D. in Solar Photovoltaic Cells at Madan Mohan Malaviya University of Technology, Gorakhpur, her research combines advanced electronics with renewable energy solutions. She has a strong academic background, holding a Master’s degree in Communication Engineering and a Bachelor’s degree in Electronics and Communication Engineering. Pooja is skilled in industry-standard software tools for VLSI design and is deeply engaged in cutting-edge research, particularly in cognitive radio, solar energy, and antenna design. Her professional goals include contributing to sustainable energy solutions and advanced communication systems.

Profile

Scopus

Strengths for the Award

  1. Solid Academic Background:
    • Pooja Chaudhary has demonstrated a strong academic record, with a Bachelor’s degree in Electronics and Communication Engineering (72.66%) and a Master’s degree in Communication Engineering (81.10%) from reputed institutions in Uttar Pradesh. This academic foundation sets a strong base for her research contributions.
  2. Ongoing Doctoral Research:
    • Pooja is pursuing a Ph.D. in Solar Photovoltaic Cells at the Madan Mohan Malaviya University of Technology, Gorakhpur, focusing on a highly relevant and evolving field in renewable energy. Her dissertation topic, “Design and Development of Compact Printed Monopole Antenna for Cognitive Radio Application,” shows her ability to combine cutting-edge communication technology with energy-efficient solutions.
  3. Research Publications:
    • Pooja has contributed to peer-reviewed journals and conferences, including:
      • Physica Scripta (2024): A publication on enhancing the efficiency of Sb2Se3 solar cells, showcasing her work on the optimization of materials for solar energy applications.
      • Emerging Materials Research (2024): Another paper on improving Sb2Se3 solar cell performance using advanced electron transport layers (IGZO and n-ZnO), demonstrating her expertise in material science and solar cell engineering.
      • International Conference Paper (2018): A paper on a switchable frequency reconfigurable UWB antenna for cognitive radio applications, reflecting her contribution to communication technologies and antennas.
    • These publications indicate a well-rounded research portfolio with applications in renewable energy, communication systems, and advanced electronics.
  4. Qualified for Major Examinations:
    • Pooja has qualified for the NET (National Eligibility Test) multiple times between 2018 and 2022, showing her consistent commitment to academic excellence.
    • She has also qualified for GATE in 2017 and 2019, showcasing her deep understanding of engineering principles.
  5. Training and Industry Expertise:
    • Pooja has completed vocational training in N.E. Railway Signal and Telecommunication Center, which is highly relevant for her role in academia and practical engineering applications.
    • She is proficient in industry-standard software tools used in VLSI design, such as Silvaco TCAD, Cadence Virtuoso, HFSS, and Synopsys Design Compiler, which are crucial for her ongoing and future research projects in VLSI, communication systems, and antenna design.
  6. Awards and Fellowships:
    • She has been recognized with the National Fellowship (valid until 2026), Rajiv Gandhi Fellowship for PG Students in 2016-2017, and NET qualifications, further underlining her academic merit and contribution to research.

Areas for Improvement

  1. Broader Research Network:
    • While Pooja has produced valuable research in her areas of expertise, expanding her professional network by collaborating with more international researchers or involving herself in multi-disciplinary projects could further enhance the visibility and impact of her work.
  2. Diversity of Research Focus:
    • Although Pooja’s research is strong in the domains of solar cells and cognitive radio, exploring interdisciplinary fields (e.g., AI in VLSI, quantum computing, or smart grid systems) could open up more innovative avenues for her work and increase her research impact.
  3. Public Engagement and Outreach:
    • More visibility in the form of invited talks, workshops, or educational outreach could help Pooja enhance her academic profile. Engaging in platforms that showcase her research, such as social media or academic conferences, could improve her recognition as a thought leader.

Education

Pooja Chaudhary completed her Bachelor’s degree in Electronics and Communication Engineering in 2014 with a score of 72.66% from the Institute of Technology and Management in Gorakhpur, affiliated with Uttar Pradesh Technical University. She later pursued a Master’s degree in Communication Engineering from Madan Mohan Malaviya University of Technology, Gorakhpur, where she achieved an impressive score of 81.10%. Currently, she is pursuing a Ph.D. in Solar Photovoltaic Cells, focusing on designing compact printed monopole antennas for cognitive radio applications. Pooja’s academic journey reflects her passion for innovative technology and commitment to improving energy systems and communications through research.

Experience

Pooja Chaudhary has 2 years of teaching experience at New Jagdish Durgawati Pvt. ITI College, Khalilabad, Sant-Kabir Nagar. In addition to her teaching role, she has worked on numerous academic projects and seminars. Her experience extends beyond teaching to practical training, having completed a four-week vocational training in signal and telecommunication at N.E. Railway, Gorakhpur. This blend of teaching, training, and research experience has shaped her into a versatile academic professional. She also possesses hands-on experience with industry-standard software tools like Silvaco TCAD, Cadence Virtuoso, HFSS, and Synopsys Design Compiler, equipping her to contribute effectively to the academic and research community.

Awards and Honors

Pooja Chaudhary has received several prestigious honors throughout her academic career. She qualified for the National Eligibility Test (NET) in 2018, 2019, 2021, 2022, and 2022, underscoring her commitment to academic excellence. She has also successfully cleared GATE in 2017 and 2019, further strengthening her profile. In recognition of her academic potential, she received the Rajiv Gandhi Fellowship for PG students in 2016-2017. Additionally, she was awarded the National Fellowship in 2021, valid until 2026, which recognizes her excellence in research. These accolades validate Pooja’s dedication to both teaching and research in electronics and renewable energy.

Research Focus

Pooja Chaudhary’s research primarily focuses on Solar Photovoltaic Cells, Cognitive Radio Applications, and VLSI Design. Her current Ph.D. work explores optimizing the efficiency of Sb2Se3 solar cells using bi-layer absorbers, along with enhancing the performance of solar cells using advanced electron transport layers like IGZO and n-ZnO. Additionally, she has worked on the design of a compact printed monopole antenna for cognitive radio applications, aiming to develop reconfigurable antennas for flexible wireless communication. Pooja’s research integrates renewable energy with communication technology, highlighting her multidisciplinary approach to solving contemporary challenges in energy and communication systems.

Publication Top Notes

  1. Enhancing efficiency of Sb2Se3 solar cell through optimized optical and electrical properties with Bi-layer absorber (Physica Scripta, 2024)
  2. Performance enhancement of Sb2Se3 solar cell with IGZO and n-ZnO as electron transport layers (Emerging Materials Research, 2024)
  3. A Switchable Frequency Reconfigurable UWB Antenna for Cognitive Radio Application (Proceedings of the 2nd International Conference on Electronics, Communication, and Aerospace Technology, ICECA 2018)

Conclusion

Pooja Chaudhary is a highly competent and promising researcher with significant contributions to the fields of solar photovoltaic technology, communication engineering, and VLSI design. Her academic qualifications, research publications, and teaching experience make her an ideal candidate for the Best Researcher Award. With continued research, collaboration, and public engagement, she is poised to make even more significant contributions to the academic and research community in the coming years.Pooja’s strengths in combining communication technologies with renewable energy, her proficiency in advanced software tools, and her consistent track record of research excellence place her as a standout candidate for this award.

 

Mine Sertsöz | Energy Engineering | Best Researcher Award

Dr. Mine Sertsöz | Energy Engineering | Best Researcher Award

Assistant Professor, Eskisehir Technical University, Turkey

Assistant Professor Mine Sertsöz is an accomplished researcher and educator in the field of energy efficiency and sustainable transport systems. With a rich academic background and extensive work in both national and international projects, she has made significant contributions to the optimization of railway systems through innovative energy modeling. Currently, she serves as a faculty member at Eskişehir Technical University, where she focuses on transportation sciences and energy-efficient solutions. 🌍💡

Profile

Scopus

Education:

Mine Sertsöz holds a License Degree in Electrical Engineering from Yıldız Technical University (2009), an MSc in Electrical Engineering from Kocaeli University (2012), and a PhD in Energy Engineering from Bilecik Şeyh Edebali University (2018). Her research during her MSc centered on Energy Efficiency in Rail Systems, while her PhD dissertation explored Solar Energy Supported Innovative Energy Modeling, Optimization, and Analysis in Railway Systems. 🎓⚡

Experience:

Mine Sertsöz began her career as an Electrical Engineer at Anadolu University, working in the Faculty of Civil Aviation from 2010 to 2014. In 2014, she transitioned into academia as a lecturer at Eskişehir Technical University. Since 2021, she has served as an Assistant Professor, continuing her research and teaching in transportation sciences, with a specific focus on energy efficiency and railway systems. 👩‍🏫🚄

Research Interests:

Her research interests lie in energy efficiency, renewable energy integration, and optimization in rail transport systems. She is particularly focused on sustainable energy solutions, such as solar power, for enhancing the performance and environmental impact of transportation infrastructure. 🔋🚆

Awards & Recognitions:

Mine Sertsöz has received recognition for her work in sustainable transport and energy efficiency, notably as an invited speaker at the Eurasia Rail Conference in 2021, where she presented on Energy Conversion in Railway Systems. Her international collaborations and contributions to projects like the CA19126 – Positive Energy Districts European Network further emphasize her leadership in the field. 🏆🌿

Publications Top Notes:

 

  • Energy Efficiency in Rail Systems (2012). This MSc dissertation explores the potential for reducing energy consumption in rail transport systems through technological improvements and efficiency measures. Kocaeli University.
  • Solar Energy Supported Innovative Energy Modeling, Optimization, and Analysis in Railway Systems (2018). This PhD dissertation investigates the integration of solar energy in railways and develops optimized models for sustainable energy use. Bilecik Şeyh Edebali University.

Priscila Guaygua-Amaguaña | Environmental Engineering | Best Researcher Award

Ms. Priscila Guaygua-Amaguaña | Environmental Engineering | Best Researcher Award

PhD student | Université de Toulouse | France

🧬 Short Bio

Priscila Guaygua is an accomplished chemist and researcher from Ecuador, currently pursuing her PhD in environmental impact assessment of bio-based materials and eco-design at Toulouse INP in France. With a rich background in chemical engineering and green chemistry, she has worked on various innovative projects, focusing on sustainable processes, environmental impact analysis, and life cycle assessment. Her research interests lie in the valorization of agricultural by-products and eco-friendly materials.

👤 Profile

Orcid

🎓 Education

Priscila’s academic journey is marked by her commitment to green chemistry and eco-friendly innovation. In 2023, she began her PhD at Toulouse INP, focusing on the comparative evaluation of environmental impacts of bio-based materials. She holds a Master of Science in Green Chemistry and Processes for Biomass from the Institut National Polytechnique de Toulouse (2019-2021), and a Chemical Engineering degree from École Nationale Polytechnique in Ecuador (2014-2019).

💼 Experience

  • 2024: Professeur de Chimie at Ipst-Cnam, Toulouse, France – Instructed students on chemical reactions, material quantification, aqueous solutions, and organic synthesis.
  • 2022: Ingénieure Projet Innovation et Environnemental at Veso Concept, Fontenilles, France – Conducted life cycle assessments, eco-design initiatives, and managed R&D projects with a focus on environmental impacts.
  • 2021: Research Assistant at Laboratoire de Génie Chimique, CNRS, Toulouse – Studied carbon dynamics in olive oil production using C-TOOL software.
  • 2020: Research Assistant at Laboratoire de Chimie Agro-industrielle, INRA, Toulouse – Analyzed life cycle of olive pomace for biocomposite production using SimaPro.
  • 2017: Research Assistant at Département de Métallurgie Extractive (DEMEX), EPN, Quito, Ecuador – Assisted in research on metallurgy.

🔬 Research Interest

Priscila’s research focuses on the life cycle assessment (LCA) of agricultural by-products, specifically olive pomace, and their integration into biocomposites. She is dedicated to developing sustainable materials and eco-friendly processes that reduce environmental impacts through innovative approaches in green chemistry and biomass valorization.

🏆 Awards

Priscila has been nominated for several awards in the field of environmental chemistry and eco-design due to her impactful contributions to green chemistry projects, but specific award details are not provided.

📚 Publications

  1. Espadas-Aldana, G., Guaygua-Amaguaña, P., Vialle, C., Belaud, J-P., Evon, P., Sablayrolles, C. (2021). Life Cycle Assessment of Olive Pomace as a Reinforcement in Polypropylene and Polyethylene Biocomposite Materials: A New Perspective for the Valorization of This Agricultural By-Product. Coatings, 11(5), 525. Link.
    Cited by 10 articles.
    Prompt: Life Cycle Assessment of Olive Pomace Biocomposites published in Coatings, 2021.

📝 Conclusion

Priscila Guaygua is a passionate advocate for green chemistry and sustainable material development. Through her research and professional endeavors, she continues to push the boundaries of eco-friendly innovations, contributing significantly to the advancement of environmentally conscious scientific practices.

Claudio Albuquerque Frate – Renewable Energy – Research Excellence in Civil and Environmental Engineering Award

Claudio Albuquerque Frate - Renewable Energy - Research Excellence in Civil and Environmental Engineering Award

Federal University of Ceará - Brazil

AUTHOR PROFILE

ORCID

EXPERT IN DECENTRALIZED RENEWABLE ENERGY SYSTEMS

Claudio Albuquerque Frate's research focuses on decentralized renewable energy systems and their complex interactions with institutions, society, and nature. His work emphasizes the integration of low-carbon technologies using quali-quantitative methods to address diverse research questions.

PHOTOVOLTAIC SYSTEMS IN BRAZIL

Frate has extensively studied the adoption of photovoltaic systems in multi-unit buildings, examining agents' rationalities for supporting distributed generation diffusion in Brazil. His 2024 publication in Energy Policy highlights key factors influencing the spread of renewable energy in urban settings.

INLAND WATERWAY TRANSPORT

Another significant area of Frate's research is the development of inland waterway transport, particularly in the Brazilian Amazon. His 2023 Q-Method study on the Tocantins River, published in Case Studies on Transport Policy, explores sustainable transport solutions in this ecologically sensitive region.

TECHNO-ECONOMIC ANALYSIS OF RENEWABLE ENERGY

Frate's techno-economic analysis of PV-wind-battery systems for remote communities, such as his 2020 case study in Haiti published in Case Studies in Chemical and Environmental Engineering, provides insights into the feasibility and impact of renewable energy solutions in isolated areas.

CARBON PAYBACK AND PHOTOVOLTAIC POWER

In his 2020 article in Utilities Policy, Frate conducted a sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant. This research underscores the environmental benefits and sustainability metrics of solar energy projects.

JUSTICE IN WIND POWER DEVELOPMENT

Frate has also explored procedural and distributive justice in the context of wind power development. His 2019 study in Energy Policy examines the subjective experiences and perceptions of local communities in Rio Grande do Norte, Brazil, regarding wind energy projects.

BARRIERS TO LARGE-SCALE RENEWABLE ENERGY

Understanding stakeholder perspectives on barriers to the adoption of large-scale renewable energy is another key focus of Frate's research. His 2019 and 2017 studies in Energies and Energy Policy, respectively, use Q-Method to reveal the challenges and drivers in the introduction of wind and solar power in Brazil.

ETHANOL AND AGRARIAN REFORM IN BRAZIL

Frate has investigated the social implications of Brazil's ethanol production ambitions on agrarian reform goals. His work highlights the complex interplay between biofuel policies and social equity, providing a nuanced understanding of sustainable development in the agricultural sector.

Mohan Reddy – Energy storage devices – Best Researcher Award

Mohan Reddy - Energy storage devices - Best Researcher Award

Yeungnam University - South Korea

AUTHOR PROFILE

GOOGLE SCHOLAR

MOHAN REDDY: PIONEER IN ENERGY STORAGE SYSTEMS AND MATERIALS SCIENCE ⚡

OVERVIEW OF EXPERTISE 🔍

Mohan Reddy is a highly skilled researcher specializing in energy storage systems, particularly supercapacitors and batteries. His work focuses on the development and testing of advanced energy storage devices for applications in technology vehicles and electronics. With a strong background in product development, Mohan has made significant contributions to the field through innovative research and collaboration with experienced research associates.

RESEARCH EXPERIENCE AND ACHIEVEMENTS 🧪

Currently, Mohan is engaged in the design and development of energy storage devices, emphasizing supercapacitors and batteries. His research includes the fabrication of these devices and rigorous testing to evaluate their electrochemical properties. He has published several noteworthy papers in reputable SCI journals, showcasing his contributions to the advancement of supercapacitor technology.

PAST RESEARCH AND DEVELOPMENT 📈

Before his current focus, Mohan spent four years researching absorber materials such as Cu2SnS3 (CTS), SnS, SnSe, and buffer layers like CdS, along with window layers of ZnO and metal contacts like Mo, Ni, and Al. He also has experience from his time at the International Advanced Research Centre (ARCI) from 2013 to 2014, where he worked on solar selective coatings for concentrated solar power (CSP) applications.

ACADEMIC POSITIONS AND TEACHING 🏫

Mohan has held several academic positions at Yeungnam University, South Korea. As a Research Professor in Chemical Engineering since 2022, and in Mechanical Engineering from 2021 to 2022, he has led research on the fabrication and real-time stability testing of energy storage devices. His post-doctoral work from 2020 to 2021 also at Yeungnam University involved investigating energy storage materials and synthesis processes for commercial device development.

AREAS OF INTEREST AND SPECIALIZATION 🌟

Mohan's research interests are diverse and include:

  • Energy Storage Devices (Supercapacitors and Batteries)
  • Thin-Film Solar Cells
  • Sulfide-Based Compounds (CTS, SnS) and Selenium-Based Compounds (CTSe, SnSe)
  • Metal Oxides Thin Films for Various Applications
  • Materials Science and Applications
  • Solar Selective Surface Coatings

FUTURE OUTLOOK AND MOTIVATION 🚀

Driven by a strong motivation to extend his knowledge and skills, Mohan is dedicated to advancing his research career. His work aims to innovate and improve energy storage technologies, contributing to the development of robust and efficient systems for modern technological applications. Mohan's future endeavors promise to bring further breakthroughs in materials science and energy storage solutions.

NOTABLE PUBLICATION

Z-scheme photocatalysis and photoelectrochemical platform with a Co3O4-CuO heterogeneous catalyst for the removal of water pollutants and generation of energy 2023 (23)

Pseudocapacitive Performance of Freestanding Ni3V2O8 Nanosheets for High Energy and Power Density Asymmetric Supercapacitors 2022 (25)

Multiple structural defects in poor crystalline nickel‐doped tungsten disulfide nanorods remarkably enhance supercapacitive performance 2022 (27)

Bio-derived graphitic carbon quantum dot encapsulated S-and N-doped graphene sheets with unusual battery-type behavior for high-performance supercapacitor 2023 (43)

Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance 2019 (99)

Nathalia Hidalgo Leite – Solar Energy – Best Researcher Award

Nathalia Hidalgo Leite - Solar Energy - Best Researcher Award

State University of Campinas - Brazil

AUTHOR PROFILE

GOOGLE SCHOLAR

NATHALIA HIDALGO LEITE: RESEARCHER AND EDUCATOR IN ENERGY SYSTEMS PLANNING 🌱

EDUCATION AND ACADEMIC JOURNEY 📚

Dr. Nathalia Hidalgo Leite is currently pursuing her Ph.D. in Energy Systems Planning at the State University of Campinas (Unicamp), Brazil, focusing on the Economic and Financial Viability for Electric Mobility. She holds an MBA in Value Investing from the University Center UniBTA and completed her M.S. in Energy Systems Planning at Unicamp, where she explored the Economic and Financial Viability of Photovoltaic Solar Energy under various feed-in tariff rules. Nathalia's academic foundation includes a B.S. in Agronomic Engineering from the Federal University of Sao Carlos (UFSCar), Brazil.

PROFESSIONAL EXPERIENCE AND RESEARCH FOCUS 🔍

Dr. Hidalgo Leite's professional journey encompasses various roles, including Researcher at the Unicamp / Sao Paulo Center for Energy Transition Studies (CPTEn) and instructor positions at Unicamp focusing on Computer Algorithms and Programming. She has contributed significantly to the field of energy transition through her research on renewable energy systems, particularly in photovoltaic solar energy and electric mobility. Her expertise extends to financial planning and analysis in the energy sector, demonstrated during her tenure at Grupo JLJ and CPFL Energy.

CERTIFICATIONS AND CONTINUOUS LEARNING 🎓

Nathalia is dedicated to continuous professional development, as evidenced by certifications in Financial Market Preparatory Course, Value Income, and specialized training in Photovoltaic Solar Energy and Financial Analysis. Her training also includes courses in Matlab, Neural Networks, and Agricultural Systems Modeling, reflecting her interdisciplinary approach to research and teaching.

AWARDS AND RECOGNITIONS 🏆

Throughout her academic journey, Nathalia has been recognized for Excellence in Academic Performance and Outstanding Athlete awards during her earlier education in Brazil and the United States. Her commitment to academic excellence and her contributions to energy systems planning underscore her role as a leader in sustainable energy research and education.

Dr. Nathalia Hidalgo Leite continues to drive innovation in energy systems planning, integrating economic viability with renewable energy technologies to pave the way for a sustainable future. Her multifaceted expertise in research, education, and financial analysis positions her as a key influencer in shaping policies and practices in the energy sector.

NOTABLE PUBLICATION

Ebtisam A. Alabdulqader – Air Pollution Control – Best Researcher Award

Ebtisam A. Alabdulqader - Air Pollution Control - Best Researcher Award

Kind Saud University - Saudi Arabia

AUTHOR PROFILE

Google Scholar

EARLY ACADEMIC PURSUITS

Dr. Ebtisam A. Alabdulqader embarked on her academic journey with a diverse range of certifications and training programs, including Bioethics, User Experience Specialist, Good Clinical Practice, Cryptography, and Database Administration. These foundational experiences laid the groundwork for her future endeavors in information technology and academia.

PROFESSIONAL ENDEAVORS

Alabdulqader's professional career spans various roles, including Vice Director of Digital Innovation Unit at the Entrepreneurship Institute and Assistant Professor in the Information Technology Department at King Saud University. Her leadership roles in academic committees and community organizations underscore her commitment to advancing education and research in her field.

CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Alabdulqader's research interests encompass Human-Computer Interaction, Usability, User Experience, Social Computing, Computer Supported Cooperative Work, Interaction Design, and Design Thinking & Innovation. Through her work, she strives to address pressing issues such as air pollution control by leveraging technology and innovative approaches.

IMPACT AND INFLUENCE

Alabdulqader's contributions extend beyond her research to include active participation in scientific and academic activities. As a program committee member for various ACM and non-ACM research venues, she has helped shape the discourse in her field. Her involvement in workshops, seminars, and panels reflects her dedication to fostering diversity, inclusion, and excellence in academia.

ACADEMIC CITATIONS

Dr. Alabdulqader's research and scholarly activities have garnered recognition, reflected in awards such as the CCIS Appreciation Award and Best Lecturer Award. Her work has been cited as exemplary in promoting research and publications within the HCI Research Group at King Saud University.

LEGACY AND FUTURE CONTRIBUTIONS

As a distinguished academic and researcher, Dr. Ebtisam A. Alabdulqader's legacy is defined by her unwavering commitment to excellence, innovation, and social impact. Her future contributions are poised to further advance knowledge and address societal challenges, including air pollution control, through interdisciplinary collaboration and cutting-edge research initiatives.

NOTABLE PUBLICATION

IoT based smart framework to predict air quality in congested traffic areas using SV-CNN ensemble and KNN imputation model

Re-articulating North-South Collaborations in HCI 2023 (1)

Understanding the Therapeutic Coaching Needs of Mothers of Children with Cerebral Palsy 2022 (4)

Feminist voices about ecological issues in HCI 2022 (18)

IslamicHCI: Designing with and within Muslim Populations 2020 (31)