Yadian Xie | Materials Science | Best Researcher Award

Yadian Xie - Materials Science and Engineering - Best Researcher Award

Guizhou Minzu University - China

AUTHOR PROFILE

SCOPUS

SUMMARY

Yadian Xie is a dedicated researcher and academic professional based in Guiyang, Guizhou. He serves as a postdoctoral researcher, associate professor, and doctoral supervisor with extensive expertise in chemistry and material sciences. His scientific work spans cutting-edge innovations in low-dimensional materials, particularly black phosphorus. Over the years, Dr. Xie has led several prestigious research projects funded by national and provincial institutions. His dedication to excellence is reflected in his numerous awards and recognitions. With over 60 high-impact publications and multiple invention patents, Dr. Xie plays a vital role in bridging fundamental research with industrial applications.

EDUCATION

Dr. Yadian Xie earned his Ph.D. in Chemistry through a joint program between Université du Québec, Canada, and the National Center for Nanoscience and Technology, China. This cross-institutional academic background has equipped him with a solid foundation in advanced chemical engineering and nanoscience. His postdoctoral fellowship at Peking University further refined his research capabilities, especially in low-dimensional materials. His educational journey reflects a consistent trajectory toward innovation in material chemistry, making him a knowledgeable and skilled figure in his field. This academic experience provides the basis for his interdisciplinary research and mentoring of future scientists.

PROFESSIONAL EXPERIENCE

Since May 2020, Dr. Xie has served as an Associate Professor at the School of Chemical Engineering, Guizhou Minzu University. From 2017 to 2020, he completed a postdoctoral fellowship at Peking University. His academic career demonstrates a steady progression through significant research and teaching roles. At Guizhou Minzu University, he also contributes to guiding graduate students and supervising doctoral research. His responsibilities include teaching, developing research infrastructure, and leading government-funded projects. His dual roles as researcher and educator position him as a leading figure in chemical engineering education and scientific innovation in Guizhou and beyond.

RESEARCH INTEREST

Dr. Xie’s research primarily focuses on the large-scale synthesis and real-world applications of black phosphorus and other low-dimensional materials. He investigates their optical, electrical, and magnetic properties through both experimental and computational approaches. His work extends to application-oriented research on emerging materials used in batteries and gas sensors. His scientific inquiries aim to understand and exploit the structural behaviors of materials at the nanoscale. This multidisciplinary focus allows him to contribute significantly to materials science, energy storage, and environmental applications, making his research both foundational and practically relevant.

AWARD AND HONOR

Dr. Xie has earned several prestigious awards for his academic and scientific achievements. These include the First Prize for Higher Education Teaching Achievement in Guizhou and the Third Prize for Scientific and Technological Progress in the province. He was also named “Most Outstanding Science and Technology Worker” in Guizhou. Notably, he received recognition for a provincial “Golden Course” in Materials Science and led major innovation projects. His honors reflect a strong commitment to education, research, and technological advancement, highlighting his role as a key contributor to the scientific and academic communities in China.

RESEARCH SKILL

Dr. Xie possesses a wide range of research skills, including chemical vapor transport, photonic crystal synthesis, and computational modeling of low-dimensional materials. He has successfully managed several complex research projects funded by national and provincial agencies. His technical expertise includes developing innovative sensors, battery materials, and advanced alumina compounds. He is also proficient in academic writing, peer review, and patent development. These skills allow him to bridge the gap between theoretical materials science and practical applications, ensuring his research delivers measurable impact in both academia and industry.

PUBLICATIONS

Title: Pyridine-functionalized chiral polyoxometalates via in situ degradation
Authors: Yu Xia, Tao Zhang, Luyu Tian, Hailiang Hu, Gang Li
Journal: Journal of Molecular Structure (2025)

Title: Post-synthetic modification strategy to immobilize acidic units within metal-organic frameworks or covalent organic frameworks for boosted proton conductivity
Authors: Hailiang Hu, Yu Xia, Xin Wang, Yadian Xie, Gang Li
Journal: [Journal not specified in source – likely Chemistry or Materials journal, inferred]

Title: Scalable fabrication of graphene-basalt composite fabric via Layer-by-Layer deposition for efficient treatment of Cr(VI) − contaminated water
Authors: Hanqing Yu, Shijiao Li, Zheng Zeng, Xin Tong, Yadian Xie
Journal: Separation and Purification Technology (2025)

Title: Research progress on enhancing particulate matters removal enabled by triboelectric effect
Authors: Yi Dai, Huan Li, Qiyu He, Yadian Xie, Shuangxi Nie
Journal: [Journal not specified in source – possibly Environmental Science or Materials journal]

CONCLUSION

Yadian Xie exemplifies excellence in research, education, and innovation. His work not only enhances academic understanding but also translates to real-world industrial solutions. Through his leadership in high-impact projects and consistent scholarly output, he contributes to advancing both science and technology in China and globally. His mentorship of future researchers and commitment to teaching excellence solidify his role as a prominent figure in chemical engineering. As a recognized academic and innovator, Dr. Xie’s work continues to influence the development of new materials and sustainable technologies with broad societal impact.

Ping Liu | Materials Science | Best Researcher Award

Mr. Ping Liu | Materials Science | Best Researcher Award

Ping Liu at Chongqing Jiaotong University, China

Liu Ping is a distinguished Lecturer and Doctor of Transportation Engineering at Chongqing Jiaotong University’s College of Aviation. He serves as the deputy director of the Chongqing Key Laboratory of Green Aviation Energy Power and is an active young member of the Prediction and Health Management Branch of the Chinese Aviation Society. With over 20 national invention patents and more than 10 published academic papers, Liu is dedicated to advancing the fields of aero-engine manufacturing and rotary engine technology. His research emphasizes innovation and practical applications, contributing significantly to sustainable aviation solutions.

Profile:

Scopus Profile

Strengths for the Award:

  1. Extensive Research Output: Liu Ping has published over 10 academic papers and holds more than 20 national invention patents. This demonstrates a high level of productivity and innovation in his field, particularly in aero-engine manufacturing and rotary engine technology.
  2. Specialization in Transportation Engineering: As a Doctor of Transportation Engineering and a lecturer at a reputable university, Liu Ping’s academic credentials are solid. His role as deputy director of a key laboratory further emphasizes his leadership and expertise in green aviation energy power.
  3. Interdisciplinary Collaboration: Liu’s involvement in various projects, including dynamic service composition in manufacturing and health management in aviation, indicates an ability to collaborate across disciplines, which is essential in today’s research environment.
  4. Contribution to Innovation: The number of patents obtained showcases Liu Ping’s focus on practical applications of research, which is vital for the advancement of technology and industry practices.
  5. Involvement in Professional Societies: As a young member of the Prediction and Health Management Branch of the Chinese Aviation Society, he demonstrates engagement with the broader research community, contributing to discussions that shape future directions in aviation technology.

Areas for Improvement:

  1. Broader Research Impact: While Liu Ping has a significant number of patents and papers, increasing the visibility and impact of his research through more high-profile publications or collaborations with industry leaders could enhance his recognition in the field.
  2. Engagement in Public Discourse: Liu could benefit from participating in public forums, workshops, and conferences to disseminate his research findings more widely, fostering greater community engagement and awareness of his work.
  3. Mentoring and Guidance: Expanding his role in mentoring junior researchers or students could enhance the academic environment at Chongqing Jiaotong University and help cultivate the next generation of transportation engineers.
  4. Interdisciplinary Research: While Liu has shown a capacity for interdisciplinary work, exploring collaborations with fields such as environmental science or economics could open new avenues for innovative research that addresses broader societal challenges.

Education:

Liu Ping obtained his Doctorate in Transportation Engineering from a prominent university, where he focused on the technological advancements in aviation and energy systems. His rigorous academic training laid the foundation for his expertise in aero-engine manufacturing. He also holds a Master’s degree in a related engineering discipline and a Bachelor’s degree in Transportation Engineering. Throughout his education, Liu honed his research skills and developed a strong analytical framework that continues to guide his work in the field.

Experience:

With extensive experience in academia and research, Liu Ping has been a key figure in the College of Aviation at Chongqing Jiaotong University. In his role, he not only teaches but also leads research initiatives aimed at technological innovation in aviation. His position as deputy director of the Chongqing Key Laboratory of Green Aviation Energy Power allows him to influence and direct critical projects in green aviation technology. Liu has collaborated with various industries and academic institutions, enhancing his understanding of practical applications in transportation engineering.

Research Focus:

Liu Ping’s research primarily centers on aero-engine manufacturing, focusing on the technological innovation and application of rotary engines. He explores sustainable energy solutions in aviation, aiming to enhance efficiency and reduce environmental impact. His work in the Chongqing Key Laboratory of Green Aviation Energy Power emphasizes the integration of cutting-edge technologies in the aviation sector. Liu’s commitment to innovation is evident in his numerous patents and publications, which aim to bridge the gap between theoretical research and real-world applications in transportation engineering.

Publication Top Notes:

  • A new car-following model with consideration of anticipation driving behavior
  • Fast threshold selection for grayscale images based on two-dimensional fuzzy renyi’s entropy and quantum genetic algorithm
  • A self-adaptive dynamic service composition and optimization framework for manufacturing resources
  • Two-step and likelihood methods for HIV viral dynamic models with covariate measurement errors and missing data
  • Analysis of longitudinal and survival data: Joint modeling, inference methods, and issues
  • An unexpected triammine(oxalato)platinum(II) complex obtained from the aqueous solution of tetraammineplatinum(II) oxalate
  • Study of monostatic and bistatic polarimetric scattering from the two-dimensional Gauss rough surface characterized by textures
  • Image quality evaluation based on contrast sensitivity function
  • Ultrasonic micro-flow measurement based on improved phase-difference method
  • The research on the new ultra-precision polishing instrument of the internal surface in the elbow

Conclusion:

Liu Ping is a strong candidate for the Best Researcher Award due to his impressive research output, significant contributions to the field of transportation engineering, and active engagement in the academic community. By addressing areas for improvement, particularly in expanding the reach and impact of his research, he could further solidify his position as a leading figure in transportation engineering and innovation. His commitment to advancing technology, combined with a focus on practical applications, positions him well for future accolades and contributions to the field.