Tarek Ahasan | Photocatalytic Water Splitting for Hydrogen Production | Best Researcher Award

Mr Tarek Ahasan | Photocatalytic Water Splitting for Hydrogen Production | Best Researcher Award

Graduate Research Assistant, New Mexico State University, United States

Tarek Ahasan is an accomplished Ph.D. candidate in Environmental Engineering at New Mexico State University, specializing in sustainable energy and water treatment technologies. With a strong academic foundation, including dual master’s degrees in Environmental Engineering and Environmental Science, Tarek focuses on innovative solutions for green hydrogen production and advanced water desalination. His research integrates photocatalysis and electromagnetic field applications to address global energy and water security challenges. Recognized for his contributions, Tarek has received prestigious awards, published in high-impact journals, and filed a patent for his groundbreaking work in photocatalytic systems. He is an active member of professional organizations and a leader in academic communities, dedicated to advancing sustainable technologies for a decarbonized future.

Professional Profile

Orcid

Scopus

Education 🎓

Tarek Ahasan is pursuing a Ph.D. in Environmental Engineering at New Mexico State University (NMSU), expected to graduate in Fall 2025, with a concurrent Master of Science in Environmental Engineering (CGPA: 4.00/4.00). He holds a Master of Science in Environmental Science (CGPA: 3.92/4.00) and a Bachelor of Science in Soil, Water, and Environment (CGPA: 3.57/4.00) from the University of Dhaka, Bangladesh. His academic journey reflects a strong focus on sustainable energy, water treatment, and environmental systems, equipping him with the expertise to drive innovative research in green technologies.

Experience 🔬

As a Graduate Research Assistant at NMSU, Tarek has led groundbreaking projects on photocatalytic hydrogen production and electromagnetic field-enhanced desalination. He developed a novel Ag-G-TiO2 nanocomposite photocatalyst, achieving 97% dye degradation efficiency and 191 μmoles g⁻¹ h⁻¹ hydrogen production. Additionally, he optimized electromagnetic field pretreatment for membrane scaling control, achieving 51.3% water recovery. Previously, at the University of Dhaka, he advanced sustainable coagulation techniques for dye effluent treatment and conducted nationwide soil health assessments to address climate change impacts on agriculture. His work bridges research and practical applications, contributing to global sustainability goals.

Awards and Honors 🏆

Tarek has been recognized with multiple awards, including the 2023-2024 New Mexico Water Resources Research Institute (NM WRRI) student grant and the National Science and Technology Fellowship (2019-20) from the Government of Bangladesh. He earned Second Place for Outstanding Poster Presentation at the 20th Annual RMSAWWA/RMWEA Student Conference (2024) and the Texas Desal Annual Conference (2023). His research has been featured in the NMWRRI Online Newsletter, highlighting his contributions to sustainable energy and water technologies.

Research Focus 🔍

Tarek’s research centers on developing sustainable alternatives to fossil fuels, focusing on green hydrogen production through advanced photocatalysis and innovative water treatment technologies. His work includes synthesizing nanocomposite photocatalysts for visible light-driven hydrogen production and optimizing electromagnetic field applications for membrane scaling control in desalination. By integrating renewable energy systems with water security solutions, Tarek aims to address global decarbonization and resource sustainability challenges, contributing to a cleaner, more resilient future.

Publication Top Notes 📚

  1. Ahasan, T., Xu, P., & Wang, H. (2024). Dual-Function Photocatalysis in the Visible Spectrum: Ag-G-TiO2 for Simultaneous Dye Wastewater Degradation and Hydrogen Production. Catalysts, 14(8), 530.
  2. Ahasan, T., Edirisooriya, E. M. N. T., Senanayake, P. S., Xu, P., & Wang, H. (2025). Advanced TiO2-Based Photocatalytic Systems for Water Splitting: Comprehensive Review from Fundamentals to Manufacturing. Molecules, 30(5), 1127.
  3. Du, X., Perera, H., Ahasan, T., Wang, Y., Shu, F., Wang, H., Yuan, K., Anovitz, L. M., Ben Ishai, P., & Xu, P. (2025). Mechanisms of Electromagnetic Field Control on Mineral Scaling in Brackish Water Reverse Osmosis: Combined Homogenous and Heterogeneous Nucleation. Separation and Purification Technology, 355(B), 129630.

Conclusion 🌍

Tarek Ahasan is a visionary researcher dedicated to advancing sustainable energy and water treatment technologies. Through his innovative work in photocatalysis and desalination, he is paving the way for a greener, more sustainable future. His achievements in research, publications, and professional recognition underscore his commitment to addressing global energy and water challenges. Tarek’s contributions exemplify the transformative potential of environmental engineering in achieving decarbonization and resource security.

 

YANG WANG | Geothermal Energy | Best Researcher Award

Dr YANG WANG | Geothermal Energy | Best Researcher Award

Senior Engineer, Shanghai Geological Engineering Exploration (Group) Co., Ltd, China

Yang Wang is a dedicated researcher and engineer specializing in geotechnical and environmental engineering. With extensive experience in energy conversion, groundwater science, and CO₂ geological sequestration, he has contributed significantly to the field. Currently serving as a Senior Engineer at Shanghai Geological and Mineral Engineering Survey (Group) Co., Ltd., he has led high-impact projects, mentored junior engineers, and collaborated on innovative solutions for complex geological challenges. His research focuses on energy piles, aquifer thermal energy storage (ATES), and thermo-hydro-mechanical simulations, with multiple publications in top-tier journals. He holds a Ph.D. in Civil and Hydraulic Engineering from Tongji University, complementing his M.S. from Beijing Normal University and B.S. from China University of Geosciences. His expertise and scholarly contributions have earned him recognition in the engineering community, with a strong citation record reflecting his impact.

PROFESSIONAL PROFILE

Scopus

EDUCATION 🎓

📍 Tongji University, Shanghai, China
🛠️ Ph.D. in Civil and Hydraulic Engineering (2020 – 2024)

  • Focused on energy geotechnics, aquifer thermal energy storage, and geotechnical simulations.

📍 Beijing Normal University, Beijing, China
🌊 M.S. in Groundwater Science and Engineering (2009 – 2012)

  • Specialized in CO₂ sequestration, groundwater flow modeling, and hydrological analysis.

📍 China University of Geosciences, Wuhan, China
💧 B.S. in Hydrology and Water Resources Engineering (2005 – 2009)

  • Gained expertise in water resources management, hydrological modeling, and environmental sustainability.

PROFESSIONAL EXPERIENCE 🏢

🔹 Shanghai Geological and Mineral Engineering Survey (Group) Co., Ltd., Shanghai, China
📌 Senior Engineer (2014 – Present)

  • Led geotechnical and environmental engineering projects, ensuring high-quality execution.
  • Conducted advanced geotechnical modeling for subsurface conditions and environmental impacts.
  • Developed innovative solutions for geological challenges and mentored junior engineers.
  • Conducted rigorous site investigations for safer construction practices.

🔹 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
📌 Assistant Researcher (2012 – 2013)

  • Conducted research on energy conversion technologies and sustainable energy solutions.
  • Managed experimental setups, data collection, and analysis for research projects.
  • Contributed to scientific publications and internal reports on energy efficiency.

AWARDS & HONORS 🏅

🏆 Recognized for excellence in geotechnical engineering research.
📜 Multiple publications in high-impact scientific journals.
🔬 Contributor to groundbreaking studies in energy piles and ATES systems.
🎖️ Active member of geotechnical and hydrology research communities.
📊 Strong citation record reflecting research impact.

RESEARCH FOCUS 🔍

🌍 Energy Geotechnics – Investigating energy piles and thermal effects in geotechnical structures.
💧 Aquifer Thermal Energy Storage (ATES) – Modeling thermal and hydromechanical interactions in aquifers.
🏗 Geotechnical Engineering – Advanced simulations for subsurface stability and environmental impact.
CO₂ Sequestration – Numerical analysis of CO₂ storage efficiency in saline aquifers.
Renewable Energy Solutions – Enhancing efficiency of geothermal and energy storage systems.

PUBLICATION TOP NOTES 📚

1️⃣ Full-scale in-situ experimental study on the bearing capacity of energy piles under varying temperature and multiple mechanical load levels. Acta Geotechnica, 2023.
2️⃣ Thermo-hydro-mechanical coupled simulation of land subsidence due to aquifer thermal energy storage system in soft soils. Journal of Rock Mechanics and Geotechnical Engineering, 2024.
3️⃣ Operation optimization for aquifer thermal energy storage (ATES) systems based on a surrogate model-assisted method. Applied Thermal Engineering, 2025.
4️⃣ Numerical investigation of the storage efficiency factor for CO₂ geological sequestration in saline formations. Energy Procedia, 2013.
5️⃣ Investigation of CO₂ storage capacity in open saline aquifers with numerical models. Procedia Engineering, 2012.
6️⃣ Three-dimensional heat transfer-seepage coupling simulation of large-scale buried pipe cluster ground source heat pump system. Acta Energiae Solaris Sinica, 2024.
7️⃣ Thermomechanical analysis of energy piles using a novel load-transfer approach considering soil coupling effects. Computers and Geotechnics, 2024.