Changxin Huang | Geotechnical Engineering | Best Researcher Award

Dr. Changxin Huang | Geotechnical Engineering | Best Researcher Award

Doctoral student | Shandong University | China

The research fields of Dr. Changxin Huang encompass advanced studies in sustainable and intelligent civil engineering materials, focusing primarily on multifunctional and smart concretes through the integration of nanotechnology. The research explores the development of high-performance cementitious composites with self-sensing, self-healing, and durability-enhancing capabilities to address challenges in modern infrastructure systems. Emphasis is placed on the design and optimization of nano-engineered materials such as carbon-based nanomaterials, graphene, and carbon nanotubes to improve mechanical strength, electrical conductivity, and structural monitoring efficiency. Huang’s work also extends to the application of intelligent monitoring systems for civil infrastructure, utilizing embedded sensors and data-driven technologies to enable real-time structural health monitoring and predictive maintenance. Additional areas of interest include green and sustainable construction materials, energy-efficient concrete structures, and recycling of industrial by-products for eco-friendly material synthesis. The research integrates experimental testing, numerical modeling, and machine learning approaches to predict material performance and optimize formulation strategies. Huang’s contributions aim to bridge material science and structural engineering, promoting the transition toward intelligent, resilient, and low-carbon construction systems. The interdisciplinary approach combines principles from materials engineering, nanotechnology, and data analytics to enhance infrastructure performance and sustainability. Overall, the research advances the vision of next-generation civil infrastructure that is adaptive, energy-efficient, and environmentally responsible through innovative multifunctional concrete technologies and smart monitoring systems.

Profile: Scopus | ORCID
Featured Publications:

A stepwise calculation method for grouting penetration in rough rock fracture based on fracture segment division. (2025). Tunnelling and Underground Space Technology.

Ramin Vafaei Poursorkhabi | Geotechnical Engineering | Best Researcher Award

Assoc. Prof. Dr. Ramin Vafaei Poursorkhabi | Geotechnical Engineering | Best Researcher Award

Associate Professor | Islamic Azad University | Iran

Assoc. Prof. Dr. Ramin Vafaei Poursorkhabi has built a strong research profile focusing on civil engineering, geotechnical engineering, structural analysis, soil improvement techniques, and the application of artificial intelligence in solving complex engineering challenges. His work spans across diverse areas such as the stabilization of soils through innovative methods like geopolymerization, evaluation of dispersive clay properties, monitoring and analysis of dam structures, and the use of metaheuristic algorithms for seismic response reduction and subsurface modeling. He has contributed significantly to advancements in hydraulic conductivity estimation, environmental optimization in road construction, and the reinforcement of geotechnical stability through geogrid applications. His studies also include offshore platform reliability, wave–structure interaction, and improvements in rubble mound breakwater resistance, showcasing an interdisciplinary approach that connects geotechnical, structural, and coastal engineering. By integrating clustering techniques, fuzzy logic, wavelet-based artificial neural networks, and hybrid optimization methods, he has introduced innovative models to enhance predictive accuracy and engineering design efficiency. Several of his publications highlight practical applications through case studies of large infrastructure projects, including dams, offshore platforms, and municipal roads, providing a blend of theoretical modeling and applied research. Additionally, his collaboration with scholars across multiple institutions has fostered a multidisciplinary approach to engineering problems, producing solutions that are both technically sound and environmentally conscious. The consistent use of computational intelligence tools demonstrates his commitment to bridging traditional engineering with modern machine learning techniques, aiming to optimize performance, reduce risk, and ensure structural safety. His publications in international journals and conference proceedings reflect not only academic contribution but also practical impact in real-world infrastructure development. This research track record establishes Ramin Vafaei Poursorkhabi as an impactful contributor in advancing the fields of geotechnical and structural engineering with strong integration of intelligent systems. 105 Citations 31 Documents 6 h-index View.

Profile: Scopus | ORCID | Research Gate 
Featured Publications:

Using the clustering method to find the final environmental parameters coefficients in road construction projects. (2025). Scientific Reports.

Experimental investigation of a special chemical additive for improving the geotechnical properties of dispersive clay soils. (2025). Results in Engineering.

Estimation of hydraulic conductivity using gradation information through Larsen fuzzy logic hybrid wavelet artificial neural network and combined artificial intelligence models. (2025). Discover Applied Sciences.

Jibin Sun – Geotechnical Engineering – Best Researcher Award

Jibin Sun - Geotechnical Engineering - Best Researcher Award

Research Associate | Tianjin University | China

Dr. Jibin Sun has established a strong research foundation in geotechnical and civil engineering, focusing on the stability, performance, and safety of underground and foundation structures. His work addresses critical challenges in tunneling engineering, including progressive failure mechanisms, local failure impacts on adjacent structures, and the effects of contact loss under shield tunnel inverts. Through both experimental and numerical studies, he has contributed to advancing knowledge in tunnel safety, ground-structure interaction, and pile behavior under cyclic loading in dry sand. His studies integrate innovative modeling techniques such as Eulerian finite element methods and Coupled Eulerian–Lagrangian simulations, demonstrating a balance of theoretical analysis and applied engineering solutions. Jibin Sun’s research outputs, published in high-impact journals like Tunnelling and Underground Space Technology, Acta Geotechnica, Géotechnique, and Engineering Failure Analysis, showcase his consistent focus on addressing complex geotechnical problems with practical relevance for infrastructure safety and resilience. Recognition through awards such as the Tianjin Science and Technology Progress Award and the Excellent Doctoral Dissertation Award of Tianjin University highlights the value and influence of his contributions. Supported by prestigious funding programs, his ongoing work continues to expand the frontiers of geotechnical engineering, particularly in underground construction and failure mechanism analysis, positioning him as an impactful contributor to the field. 342 Citations by 288 documents, 20 Documents, 9 h-index View.

Profile: Scopus
Featured Publications: 
  1. Experimental study of the effects of contact loss under a shield tunnel invert. (2024). Cited by 2.

  2. Coupled Eulerian-Lagrangian simulation of progressive failure in shield tunnels induced by developing contact loss. (2024). Cited by 8.

Zhiliang Wang – Geotechnical Engineering – Best Researcher Award

Prof. Zhiliang Wang | Geotechnical Engineering | Best Researcher Award

Professor | Kunming University of Science and Technology | China

Prof. Zhiliang Wang has established a strong research foundation in civil and geotechnical engineering, focusing extensively on tunnel and underground engineering, soil behavior, and numerical simulation methods. His research contributions address safety evaluation of tunnels, mitigation of hazards associated with special soils, and the development of multi-field coupling models for geotechnical applications. By integrating theoretical modeling with experimental studies, Zhiliang Wang has advanced understanding of soil stabilization mechanisms, long-term settlement issues in peat soils, and fracture propagation in rock mass. His works also highlight the application of lattice Boltzmann methods for simulating fluid flow, heat transfer, and seepage in complex soil and rock structures, bridging the gap between computational approaches and practical engineering challenges. Through projects supported by the National Natural Science Foundation of China and industry collaborations, he has contributed innovative solutions for freezing processes in soils, shield tunneling effects, and soil-structure interaction in underground construction. His publications in high-impact journals cover a wide range of topics, from sustainable approaches such as incorporating clay and manufactured sand in soil stabilization to advanced simulations of thermal and hydraulic processes in soils. Zhiliang Wang’s research outcomes not only enhance engineering safety and efficiency but also align with sustainability goals by addressing energy-efficient and environmentally friendly practices in geotechnical engineering. His active involvement in teaching courses like tunnel engineering and numerical simulation further strengthens the link between academic research and practical application, inspiring future professionals in the field. With 366 citations by 339 documents, 65 documents, and an h-index of 11, Zhiliang Wang’s scholarly impact reflects his significant role in shaping modern research and innovations in underground engineering and soil mechanics.

Profile: Scopus
Featured Publications: 
  1. Effect of random microcracks on macroscopic crack propagation in rock. (2024). Cited by 2.

  2. A numerical simulation of high-temperature rock hydraulic fracturing based on coupled thermo-mechanical peridynamics. (2024). Cited by 1.

  3. Study on the seepage and heat transfer effect of rough fractures in hot matrix considering dynamic thermophysical properties of fluid. (2024). Cited by 2.

  4. Numerical simulation of glass panel impact damage based on peridynamics. (2024). Cited by 1.