Alireza Rezaeian | Seismic Design | Best Researcher Award

Dr Alireza Rezaeian | Seismic Design | Best Researcher Award

CEO, sazaninc, Canada

Dr. Alireza Rezaeian is a highly accomplished Structural Civil Engineer with a Ph.D. from Iran University of Science & Technology (IUST). With over two decades of experience, he has worked on diverse projects across Iran, Canada, and the USA. His expertise spans the design and analysis of concrete, steel, and wood structures, as well as seismic behavior and finite element modeling. Dr. Rezaeian has held key roles in engineering firms, including SAZAN Inc., NCK Engineering, and MOGHAVEM SHAHR, where he led structural design teams. His research focuses on seismic performance, moment connections, and energy dissipation in steel structures. He is a published author with numerous citations in reputable journals.

Professional Profile

Google Scholar

Scopus

Education 🎓

Dr. Rezaeian holds a Ph.D. (2010) and an M.Sc. (2002) in Structural Civil Engineering from Iran University of Science & Technology (IUST), Tehran, Iran. He earned his B.Sc. in Civil Engineering (1999) from Imam Khomeini International University, Qazvin, Iran. His academic background laid the foundation for his expertise in structural analysis, seismic design, and finite element modeling.

Experience 💼

Dr. Rezaeian has over 20 years of experience in structural engineering. He has worked with firms like SAZAN Inc., NCK Engineering, and TEG Structures in Canada, focusing on the design and analysis of concrete, steel, and wood structures. In Iran, he served as the Head of the Structural Design Department at MOGHAVEM SHAHR, managing large-scale projects and leading design teams. His roles included reviewing shop drawings, conducting site visits, and coordinating with architects and contractors.

Awards and Honors 🏆

While specific awards are not listed, Dr. Rezaeian’s contributions to structural engineering are evident through his extensive research publications and leadership roles in major engineering projects. His work on seismic behavior and steel structures has been widely cited, reflecting his impact on the field.

Research Focus 🔬

Dr. Rezaeian’s research focuses on the seismic performance of steel structures, including eccentrically braced frames, moment connections, and energy dissipation systems. He has extensively studied the cyclic behavior of composite vertical shear links, panel zones, and ConXL moment connections. His work combines experimental and numerical analyses to optimize structural performance under seismic loads.

Publication Top Notes 📚

  1. Experimental study of cyclic behavior of composite vertical shear link in eccentrically braced frames
  2. Seismic behavior of ConXL rigid connection in box-columns not filled with concrete
  3. Experimental investigation of panel zone in rigid beam to box column connection
  4. Seismic performance of eccentrically braced frame with vertical link using PBPD method
  5. Numerical study of panel zone in a moment connection without continuity plates
  6. Assessment of the seismic behavior of eccentrically braced frame with double vertical link (DV-EBF)
  7. The experimental study of eccentrically braced frames with double vertical links
  8. Investigation of the ConXL moment connection cyclic behavior in box columns without filling concrete with different arrangement of collar bolts
  9. Deviation from target debt ratio, cash flow imbalance and capital structure adjustment
  10. Evaluation of damage index of steel moment resistance frames before and after seismic rehabilitation by steel braces and shear wall
  11. Evaluation of steel plate shear walls based on performance based plastic design
  12. Optimal design of eccentrically braced frames with vertical link (V-EBFs) in order to maximize energy dissipation
  13. Seismic behavior of eccentrically braced frames with composite vertical shear link (CV-EBFs)
  14. Test program on stiffened column bases subjected to cyclic loading
  15. Evaluation of non-linear cyclic behavior of CONXL moment connection with different detail in the column and optimizing the arrangement of bolts
  16. Improvement of seismic behavior of concentrically braced frames making use of fuse elements in brace members
  17. Experimental and Analytical Observations of the Effect of Leveling Nuts on the Stiffened Column Bases Behavior
  18. The influence of national and patriotic Persian epic in the Poetry of Iqbal Lahori
  19. EVALUATION OF DIRECT ANALYSIS METHOD ON HEAVY OIL STRUCTURES BY INCREMENTAL DYNAMIC ANALYSIS

Conclusion 🌟

Dr. Alireza Rezaeian is a distinguished structural engineer with a strong academic background and extensive professional experience. His contributions to seismic design and steel structures have advanced the field, as evidenced by his numerous publications and leadership roles. His work continues to influence both research and practical applications in structural engineering.

Nurhan Ecemis | Earthquake Engineering | Best Researcher Award

Prof Nurhan Ecemis | Earthquake Engineering | Best Researcher Award

Civil Engineering, Izmir Institute of technology, Turkey

Dr. Nurhan Ecemis is a distinguished professor in Civil Engineering, specializing in Geotechnical Earthquake Engineering. He earned his Ph.D. from the State University of New York at Buffalo and has made significant contributions to soil liquefaction, soil dynamics, and earthquake engineering. With extensive academic and industry experience, Dr. Ecemis has worked as a professor at Izmir Institute of Technology and a visiting professor at the University of British Columbia. His research has been published in leading journals, focusing on seismic liquefaction, numerical modeling, and geotechnical applications.

PROFESSIONAL PROFILE

Google Scholar

Orcid

Scopus

EDUCATION 🎓

  • Ph.D. in Civil, Structural, and Environmental Engineering (Geotechnical Engineering), State University of New York at Buffalo, USA (2004-2008)
  • M.S. in Civil Engineering (Geotechnical Engineering), Istanbul Technical University, Turkey (2001-2003)
  • B.S. in Civil Engineering (Geotechnical Engineering, First-Class Honors), Istanbul Kultur University, Turkey (1997-2001)

PROFESSIONAL EXPERIENCE 🏗️

  • Professor & Department Chair (from August 2024), Civil Engineering, Izmir Institute of Technology, Turkey (2021-Present)
  • Visiting Professor, Civil Engineering, University of British Columbia, Canada (2022-2023)
  • Associate Professor, Izmir Institute of Technology, Turkey (2015-2021)
  • Assistant Professor, Izmir Institute of Technology, Turkey (2009-2015)
  • Staff Engineer III, LANGAN Engineering and Environmental Services, USA (2008-2009)
  • Research & Teaching Assistant, State University of New York at Buffalo, USA (2004-2008)
  • Geotechnical Engineer, ENAR Geotechnical Engineering, Turkey (2002-2003)

AWARDS & HONORS 🏅

  • Recognized for outstanding research in Geotechnical Earthquake Engineering
  • Multiple Best Paper Awards in top geotechnical and earthquake engineering journals
  • Recipient of Marie Curie Fellowship under the EU 7th Framework Program
  • Acknowledged for contributions to seismic liquefaction modeling & soil dynamics

RESEARCH FOCUS 🔬

Dr. Ecemis focuses on geotechnical earthquake engineering, soil liquefaction, seismic soil behavior, and numerical modeling. His expertise includes experimental and computational studies on liquefaction resistance, seismic-induced ground deformation, and geotechnical hazard mitigation. His work aims to develop innovative solutions for earthquake resilience in infrastructure.

PUBLICATION TOP NOTES 📚

  • Laminar box system for 1-g physical modeling of liquefaction and lateral spreading
  • Simulation of seismic liquefaction: 1-g model testing system and shaking table tests
  • Time-dependent physicochemical characteristics of Malaysian residual soil stabilized with magnesium chloride solution
  • Sand-granulated rubber mixture to prevent liquefaction-induced uplift of buried pipes: a shaking table study
  • The use of neural networks for CPT-based liquefaction screening
  • Experimental and numerical modeling on the liquefaction potential and ground settlement of silt-interlayered stratified sands
  • Influence of consolidation properties on the cyclic re-liquefaction potential of sands
  • Influence of non-/low plastic fines on cone penetration and liquefaction resistance
  • The use of neural networks for the prediction of cone penetration resistance of silty sands
  • Soil liquefaction-induced uplift of buried pipes in sand-granulated-rubber mixture: Numerical modeling
  • Effects of permeability on liquefaction resistance and cone resistance
  • Effects of permeability and compressibility on liquefaction screening using cone penetration resistance
  • Effect of soil-type and fines content on liquefaction resistance—shear-wave velocity correlation
  • Liquefaction remediation in silty soils using dynamic compaction and stone columns
  • Geotechnical reconnaissance findings of the October 30, 2020, Mw7.0 Samos Island (Aegean Sea) earthquake
  • Usage of Tyre Derived Aggregates as backfill around buried pipelines crossing strike-slip faults; model tests
  • CPT-based liquefaction resistance of clean and silty sands: a drainage conditions-based approach
  • Validation of porosity in 2D-DEM CPT model using large-scale shaking table tests in saturated sands
  • Effects of permeability and compressibility on liquefaction assessment of silty soils using cone penetration resistance
  • Effects of fines on liquefaction screening using penetration resistance