Mahasakti Mahamaya | Geotechnical Engineering | Women Researcher Award

Dr. Mahasakti Mahamaya | Geotechnical Engineering | Women Researcher Award

Associate Professor | OP Jindal University | India

Dr. Mahasakti Mahamaya is a distinguished researcher whose academic contributions span across engineering and interdisciplinary sciences, with a focus on innovative methodologies, sustainable development, and applied technologies. Her research portfolio demonstrates significant depth, addressing complex real-world challenges through analytical precision and forward-looking inquiry. Dr. Mahamaya has authored a substantial number of peer-reviewed papers in reputed international journals and conferences, contributing extensively to the advancement of knowledge in her field. Her work has attracted a remarkable level of global attention, reflected through 483 total citations and 445 citations since 2020, underscoring the continuing influence of her research. With an h-index of 10 and an i10-index of 10, Dr. Mahamaya has consistently maintained scholarly excellence and research impact across multiple domains. She has actively collaborated with experts and institutions worldwide, strengthening multidisciplinary networks and fostering the integration of academic research with industry and policy frameworks. Her studies have advanced understanding in areas such as material behavior, computational modeling, and sustainable engineering practices, while also highlighting the societal and environmental implications of technological innovation. Through mentorship, publication, and collaborative initiatives, Dr. Mahamaya has contributed to nurturing a new generation of researchers and to shaping future-oriented strategies in engineering and applied science. Her sustained academic engagement and global recognition underscore a career dedicated to impactful, ethically grounded, and socially relevant scientific inquiry, positioning her as a leading figure in her research domain.

Featured Publications:

Suman, S., Mahamaya, M., & Das, S. K. (2016). Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques. International Journal of Geosynthetics and Ground Engineering, 2(2), 1–11.

Mahamaya, M., Das, S. K., Reddy, K. R., & Jain, S. (2021). Interaction of biopolymer with dispersive geomaterial and its characterization: An eco-friendly approach for erosion control. Journal of Cleaner Production, 127778.

Parhi, P. S., Garanayak, L., Mahamaya, M., & Das, S. K. (2017). Stabilization of an expansive soil using alkali activated fly ash based geopolymer. International Congress and Exhibition "Sustainable Civil Infrastructures".

Mahamaya, M., & Das, S. K. (2017). Characterization of mine overburden and fly ash as a stabilized pavement material. Particulate Science and Technology, 35(6), 660–666.

Das, S. K., Mahamaya, M., & Reddy, K. R. (2020). Coal mine overburden soft shale as a controlled low strength material. International Journal of Mining, Reclamation and Environment, 34(10), 725–747.

Changxin Huang | Geotechnical Engineering | Best Researcher Award

Dr. Changxin Huang | Geotechnical Engineering | Best Researcher Award

Doctoral student | Shandong University | China

The research fields of Dr. Changxin Huang encompass advanced studies in sustainable and intelligent civil engineering materials, focusing primarily on multifunctional and smart concretes through the integration of nanotechnology. The research explores the development of high-performance cementitious composites with self-sensing, self-healing, and durability-enhancing capabilities to address challenges in modern infrastructure systems. Emphasis is placed on the design and optimization of nano-engineered materials such as carbon-based nanomaterials, graphene, and carbon nanotubes to improve mechanical strength, electrical conductivity, and structural monitoring efficiency. Huang’s work also extends to the application of intelligent monitoring systems for civil infrastructure, utilizing embedded sensors and data-driven technologies to enable real-time structural health monitoring and predictive maintenance. Additional areas of interest include green and sustainable construction materials, energy-efficient concrete structures, and recycling of industrial by-products for eco-friendly material synthesis. The research integrates experimental testing, numerical modeling, and machine learning approaches to predict material performance and optimize formulation strategies. Huang’s contributions aim to bridge material science and structural engineering, promoting the transition toward intelligent, resilient, and low-carbon construction systems. The interdisciplinary approach combines principles from materials engineering, nanotechnology, and data analytics to enhance infrastructure performance and sustainability. Overall, the research advances the vision of next-generation civil infrastructure that is adaptive, energy-efficient, and environmentally responsible through innovative multifunctional concrete technologies and smart monitoring systems.

Profile: Scopus | ORCID
Featured Publications:

A stepwise calculation method for grouting penetration in rough rock fracture based on fracture segment division. (2025). Tunnelling and Underground Space Technology.