Sukarman Sukarman | Materials Science and Engineering | Best Researcher Award

Mr . Sukarman Sukarman | Materials Science and Engineering | Best Researcher Award

Universitas Buana Perjuangan Karawang , Indonesia

Sukarman, a lecturer at Universitas Buana Perjuangan Karawang and a Ph.D. candidate in Mechanical Engineering, is a promising researcher with a strong focus on nanomaterials, nanofluids, and thermal-fluid sciences. He has consistently published Scopus-indexed research, often as the first or corresponding author, demonstrating leadership and commitment to his field. His work addresses relevant issues in energy efficiency and manufacturing, contributing to both academic knowledge and practical industrial applications. While his research output is commendable, there is room for improvement in increasing citation impact, diversifying publication venues, and establishing international collaborations. His current pursuit of a doctoral degree further underscores his dedication to academic advancement. Overall, Sukarman’s research performance, publication consistency, and focus on emerging engineering topics make him a strong candidate for the Best Researcher Award, particularly at the national or institutional level, with significant potential for future growth and wider academic impact.

PROFESSIONAL PROFILE

EDUCATION🎓

Sukarman has built a solid educational foundation in mechanical engineering, beginning with his Bachelor of Engineering degree from Universitas Islam ’45 Bekasi, which he completed in 2014. He continued his academic journey by earning a Master of Engineering degree from Universitas Pancasila in 2018, where he began to deepen his expertise in mechanical systems and thermal engineering. Currently, he is pursuing a Ph.D. in Mechanical Engineering at Universitas Sebelas Maret, Surakarta, further advancing his specialization in nanomaterials, nanofluids, and energy-efficient technologies. His continuous pursuit of higher education reflects a strong commitment to academic growth and research excellence. Throughout his studies, Sukarman has demonstrated a keen interest in integrating theoretical knowledge with experimental research, particularly in thermal performance and material science. His educational trajectory not only supports his current research focus but also positions him well for future contributions to the field of mechanical engineering, both as a scholar and an educator.

PROFESSIONAL EXPERIENCE📝

Sukarman serves as a lecturer in the Department of Mechanical Engineering at Universitas Buana Perjuangan Karawang, where he plays a key role in teaching, research, and academic development. His professional journey reflects a strong dedication to both education and research, particularly in the areas of nanomaterials, thermal systems, and manufacturing processes. In addition to his teaching responsibilities, he actively supervises student projects and contributes to curriculum enhancement within his department. Sukarman has successfully integrated his research interests into his academic role, publishing multiple Scopus-indexed papers and leading several studies as the first or corresponding author. His hands-on experience in experimental mechanics, coupled with his academic background, allows him to bring real-world engineering challenges into the classroom. His involvement in conferences, journal publications, and applied research initiatives demonstrates a commitment to advancing mechanical engineering both in theory and practice. Sukarman’s professional experience showcases a balanced blend of academic leadership and technical expertise.

RESEARCH INTEREST

Sukarman’s research interests lie at the intersection of advanced materials and thermal-fluid sciences, with a particular focus on nanomaterials, nanofluids, and their applications in mechanical and energy systems. He is deeply engaged in exploring how nanomaterials can enhance the thermal conductivity and efficiency of industrial cooling systems, especially in processes like plastic injection molding and transformer cooling. His work also extends to manufacturing processes, including metal forming and resistance spot welding, where he investigates optimization techniques to improve mechanical performance and energy use. Sukarman is interested in experimental mechanics, applying hands-on testing methods to validate models and improve system designs. His research contributes to solving practical engineering challenges while also advancing theoretical understanding in heat transfer, energy efficiency, and sustainable materials. This blend of applied and experimental research underlines his commitment to innovation in mechanical engineering, making his work relevant to both academic and industrial advancements in energy and manufacturing technologies.

AWARD AND HONOR🏆

While specific awards and honors have not been listed, Sukarman’s growing body of peer-reviewed publications and his active role as a first or corresponding author in multiple Scopus-indexed journals reflect academic recognition and professional respect within his field. His selection as a lead author in research involving advanced nanofluids and mechanical systems optimization demonstrates the trust and acknowledgment he has earned from his academic peers and collaborators. Additionally, his ongoing Ph.D. studies and increasing involvement in high-impact research indicate a trajectory toward greater academic distinction. As a faculty member contributing significantly to research and education, he is well-positioned for future honors, such as best paper awards, research grants, or institutional recognitions. His commitment to high-quality research, innovation in mechanical engineering, and consistent scholarly output mark him as a strong candidate for future accolades, including the Best Researcher Award, as his contributions continue to grow in relevance and impact within the academic and engineering communities.

RESEARCH SKILL🔬

Sukarman possesses strong and diverse research skills that are well-aligned with the demands of modern mechanical engineering. His expertise spans experimental design, data analysis, materials characterization, and process optimization. He demonstrates a solid command of nanomaterials and nanofluids, particularly in enhancing thermal performance for industrial applications. His ability to design and conduct complex experiments—such as investigating heat transfer behavior in customized cooling systems or analyzing mechanical properties in metal forming—shows a high level of technical competence. Sukarman is skilled in using tools such as Taguchi Design of Experiments (DOE) for optimization and various analytical techniques for material and thermal analysis. His multiple first-author publications indicate proficiency in academic writing, literature review, and scientific communication. Furthermore, his collaborative work across projects reflects his ability to work within interdisciplinary teams. These research skills not only support his current projects but also equip him to contribute meaningfully to innovation and applied research in mechanical engineering.

CONCLUSION

Sukarman stands out as an emerging expert in nanomaterials and mechanical engineering research. His career merges academic instruction with experimental discovery, producing practical results that advance both theory and application. He consistently contributes to high-quality research, demonstrating a passion for developing sustainable technologies in energy and materials science. With strong publication credentials and an evolving academic profile, Sukarman is well-positioned to influence next-generation mechanical engineering practices. His pursuit of excellence in research and education ensures a lasting impact on both students and the broader engineering community.

PUBLICATIONS

Enhancing Thermal Conductivity of TiO₂-3%F⁺/MEG-40 Binary Nanofluid for Sustainable Cooling Systems in Plastic Injection Molding Applications

  • Authors: Sukarman, Budi Krisitiawan, Eko Prasetya Budiana, Khoirudin, Amri Abdulah

  • Journal: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

  • Year: 2025

Heat Transfer Characteristic of Al₂O₃ Nanofluid with Naphthenic Transformers Oil as Base Fluid

  • Authors: Khoirudin, Budi Kristiawan, Budi Santoso, Sukarman, Amri Abdulah

  • Journal: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences

  • Year: 2025

 

Jan Holnicki-Szulc | Adaptive Structures | Best Innovation Award

Prof. Dr Jan Holnicki-Szulc | Adaptive Structures | Best Innovation Award

Institute of Fundamental Technological Research-Polish Academy of Sciences, Poland

Prof. Jan Holnicki-Szulc, born on June 22, 1945, in Poland, is a distinguished academic and researcher in intelligent technologies and structural engineering. He holds dual Master’s degrees in Mathematics and Engineering, a Ph.D. in Technical Sciences, and a Dr hab. eng. from the Institute of Fundamental Technological Research, Polish Academy of Sciences (IPPT-PAN). Since 1999, he has served as a Professor at IPPT-PAN, where he leads groundbreaking research in smart structures, structural health monitoring, and adaptive impact absorption. His work has significantly advanced the fields of safety engineering and adaptive materials, earning him international recognition. Prof. Holnicki-Szulc has held visiting positions at prestigious institutions worldwide, including Ecole Centrale de Lyon, Universitat Politecnica de Catalunya, and Virginia Polytechnic Institute. His contributions to structural control and adaptive systems have been widely cited, making him a leading figure in his field.

Professional Profile

Google Scholar

Orcid

Scopus

Education 🎓

Prof. Jan Holnicki-Szulc’s academic journey began with a Master’s in Engineering from the Technical University of Warsaw (1969) and a Master’s in Mathematics from the University of Warsaw (1972). He earned his Ph.D. in Technical Sciences from IPPT-PAN in 1973, followed by a Dr hab. eng. in 1983. His academic excellence culminated in his appointment as a Professor at IPPT-PAN in 1999. His multidisciplinary education in engineering and mathematics laid the foundation for his pioneering work in smart structures and adaptive systems. Prof. Holnicki-Szulc’s academic credentials reflect his deep expertise in both theoretical and applied sciences, enabling him to bridge the gap between advanced mathematics and practical engineering solutions.

Experience 💼

Prof. Jan Holnicki-Szulc has held numerous academic and research positions at IPPT-PAN, progressing from Assistant Professor (1973-1983) to Associate Professor (1983-1999) and finally to Professor (1999-present). He has also been a Visiting Professor at institutions like Ecole Centrale de Lyon, Universitat Politecnica de Catalunya, and Universidad da Beira Interior. His international experience includes research roles at Virginia Polytechnic Institute, Northwestern University, and the University of Michigan. Prof. Holnicki-Szulc has delivered invited lectures at universities worldwide, including Stanford University, Imperial College London, and the University of Tennessee. His extensive experience in both academia and industry has enabled him to develop innovative solutions in structural health monitoring, adaptive materials, and safety engineering, making him a globally recognized authority in his field.

Awards and Honors  🏆

Prof. Jan Holnicki-Szulc’s contributions to engineering and technology have earned him numerous accolades. His research on smart structures and adaptive systems has been widely recognized, with several of his publications ranking among the most cited in the field. He has been invited to deliver lectures at prestigious institutions worldwide, reflecting his international reputation. Prof. Holnicki-Szulc’s work on the Virtual Distortion Method and adaptive impact absorption has been particularly influential, earning him recognition from leading engineering organizations. His leadership in the Division of Intelligent Technologies at IPPT-PAN has further solidified his status as a pioneer in the field. While specific awards are not listed, his extensive publication record, international collaborations, and invited lectures underscore his significant contributions to structural engineering and smart technologies.

Research Focus  🔍

Prof. Jan Holnicki-Szulc’s research focuses on smart technologies for safety engineering, structural health monitoring, and adaptive impact absorption. He is renowned for developing the Virtual Distortion Method, a versatile tool for structural analysis and optimization. His work on adaptive landing gear, inflatable structures for offshore wind turbines, and semi-active vibration damping has practical applications in aerospace, civil engineering, and renewable energy. Prof. Holnicki-Szulc’s research also extends to damage identification in skeletal structures and leakage detection in water networks. His innovative approaches to structural modifications and load capacity improvement have significantly advanced the field of adaptive materials. By combining theoretical insights with practical solutions, his research addresses critical challenges in structural safety and efficiency, making him a leading figure in intelligent technologies and smart materials.

Publication Top Notes 📚

  1. A European Association for the Control of Structures joint perspective. Recent studies in civil structural control across Europe 🌍
  2. Smart technologies for safety engineering 🛠️
  3. Structural analysis, design and control by the virtual distortion method 📐
  4. High-performance impact absorbing materials—the concept, design tools and applications 🛡️
  5. The virtual distortion method—a versatile reanalysis tool for structures and systems 🔧
  6. Adaptive landing gear concept—feedback control validation ✈️
  7. Mitigation of ice loading on off-shore wind turbines: Feasibility study of a semi-active solution 🌬️
  8. Protecting offshore wind turbines against ship impacts by means of adaptive inflatable structures 🚢
  9. Identification of structural loss factor from spatially distributed measurements on beams with viscoelastic layer 📏
  10. On-line impact load identification 💻
  11. Leakage detection in water networks 💧
  12. Adaptive aircraft shock absorbers 🛫
  13. Structural modifications simulated by virtual distortions 🏗️
  14. Adaptive inertial shock-absorber 🚀
  15. Virtual distortion method 📘
  16. Design of adaptive structures for improved load capacity 🏋️
  17. Semi-active damping of vibrations. Prestress Accumulation-Release strategy development 🌀
  18. Damage identification in skeletal structures using the virtual distortion method in frequency domain 📊
  19. Damage identification by the dynamic virtual distortion method 🔍
  20. Experimental and numerical study of full-scale scissor type bridge 🌉

Conclusion 🌟

Prof. Jan Holnicki-Szulc is a pioneering figure in intelligent technologies and structural engineering. His multidisciplinary education, extensive academic experience, and groundbreaking research have made significant contributions to smart structures, adaptive materials, and safety engineering. With a career spanning over five decades, he continues to inspire innovation and excellence in his field.

    •