Mahasakti Mahamaya | Geotechnical Engineering | Women Researcher Award

Dr. Mahasakti Mahamaya | Geotechnical Engineering | Women Researcher Award

Associate Professor | OP Jindal University | India

Dr. Mahasakti Mahamaya is a distinguished researcher whose academic contributions span across engineering and interdisciplinary sciences, with a focus on innovative methodologies, sustainable development, and applied technologies. Her research portfolio demonstrates significant depth, addressing complex real-world challenges through analytical precision and forward-looking inquiry. Dr. Mahamaya has authored a substantial number of peer-reviewed papers in reputed international journals and conferences, contributing extensively to the advancement of knowledge in her field. Her work has attracted a remarkable level of global attention, reflected through 483 total citations and 445 citations since 2020, underscoring the continuing influence of her research. With an h-index of 10 and an i10-index of 10, Dr. Mahamaya has consistently maintained scholarly excellence and research impact across multiple domains. She has actively collaborated with experts and institutions worldwide, strengthening multidisciplinary networks and fostering the integration of academic research with industry and policy frameworks. Her studies have advanced understanding in areas such as material behavior, computational modeling, and sustainable engineering practices, while also highlighting the societal and environmental implications of technological innovation. Through mentorship, publication, and collaborative initiatives, Dr. Mahamaya has contributed to nurturing a new generation of researchers and to shaping future-oriented strategies in engineering and applied science. Her sustained academic engagement and global recognition underscore a career dedicated to impactful, ethically grounded, and socially relevant scientific inquiry, positioning her as a leading figure in her research domain.

Featured Publications:

Suman, S., Mahamaya, M., & Das, S. K. (2016). Prediction of maximum dry density and unconfined compressive strength of cement stabilised soil using artificial intelligence techniques. International Journal of Geosynthetics and Ground Engineering, 2(2), 1–11.

Mahamaya, M., Das, S. K., Reddy, K. R., & Jain, S. (2021). Interaction of biopolymer with dispersive geomaterial and its characterization: An eco-friendly approach for erosion control. Journal of Cleaner Production, 127778.

Parhi, P. S., Garanayak, L., Mahamaya, M., & Das, S. K. (2017). Stabilization of an expansive soil using alkali activated fly ash based geopolymer. International Congress and Exhibition "Sustainable Civil Infrastructures".

Mahamaya, M., & Das, S. K. (2017). Characterization of mine overburden and fly ash as a stabilized pavement material. Particulate Science and Technology, 35(6), 660–666.

Das, S. K., Mahamaya, M., & Reddy, K. R. (2020). Coal mine overburden soft shale as a controlled low strength material. International Journal of Mining, Reclamation and Environment, 34(10), 725–747.

Yiyi Yang | Geotechnical Engineering | Best Scholar Award

Ms. Yiyi Yang | Geotechnical Engineering | Best Scholar Award

Northwestern University | China

Ms. Yiyi Yang is a dedicated researcher in geological engineering with a strong academic foundation and growing expertise in soil mechanics and geotechnical applications. Currently pursuing a master’s degree in Geological Engineering at Northwest University, Xi’an, following a successful completion of a bachelor’s degree in the same field at Xi’an University of Science and Technology, the academic journey reflects both excellence and commitment. Consistently recognized with multiple scholarships and awards, including the First-Class Scholarship at Northwest University, the performance ranking at the top of the class underscores outstanding ability and determination. Research contributions demonstrate an interest in soil-water interactions, particularly in the deformation of compacted loess under wetting and infiltration processes. Work on compaction conditions, microstructural evolution, and hydraulic conductivity showcases both analytical skills and experimental rigor. As part of a collaborative project under the supervision of Ping Li, significant insights were gained into loess behavior, which are highly relevant to civil engineering and geotechnical practices. The publication “From agricultural waste to geotechnical application: Multiscale mechanisms of apple tree biochar for loess reinforcement” in Powder Technology highlights the capacity to connect environmental sustainability with engineering innovation by exploring biochar as a reinforcement material. Beyond academics, contributions as a volunteer and recognition with a two-star volunteer award reflect a well-rounded individual balancing research, academic achievement, and community engagement. Technical skills span experimental methods, data collection, and advanced use of specialized software including AutoCAD, CorelDraw, Origin, and Python, reinforcing readiness for complex research and engineering tasks. Proficiency in English, demonstrated by CET-6, further supports the ability to engage with international research. Altogether, the profile demonstrates exceptional potential for advancing knowledge in geological engineering, particularly in sustainable geotechnical solutions that bridge environmental considerations with practical applications in soil stabilization and infrastructure development.

Profile: Scopus
Featured Publication:

From agricultural waste to geotechnical application: Investigation of apple tree biochar for loess reinforcement. (2025). Powder Technology.

Jibin Sun – Geotechnical Engineering – Best Researcher Award

Jibin Sun - Geotechnical Engineering - Best Researcher Award

Research Associate | Tianjin University | China

Dr. Jibin Sun has established a strong research foundation in geotechnical and civil engineering, focusing on the stability, performance, and safety of underground and foundation structures. His work addresses critical challenges in tunneling engineering, including progressive failure mechanisms, local failure impacts on adjacent structures, and the effects of contact loss under shield tunnel inverts. Through both experimental and numerical studies, he has contributed to advancing knowledge in tunnel safety, ground-structure interaction, and pile behavior under cyclic loading in dry sand. His studies integrate innovative modeling techniques such as Eulerian finite element methods and Coupled Eulerian–Lagrangian simulations, demonstrating a balance of theoretical analysis and applied engineering solutions. Jibin Sun’s research outputs, published in high-impact journals like Tunnelling and Underground Space Technology, Acta Geotechnica, Géotechnique, and Engineering Failure Analysis, showcase his consistent focus on addressing complex geotechnical problems with practical relevance for infrastructure safety and resilience. Recognition through awards such as the Tianjin Science and Technology Progress Award and the Excellent Doctoral Dissertation Award of Tianjin University highlights the value and influence of his contributions. Supported by prestigious funding programs, his ongoing work continues to expand the frontiers of geotechnical engineering, particularly in underground construction and failure mechanism analysis, positioning him as an impactful contributor to the field. 342 Citations by 288 documents, 20 Documents, 9 h-index View.

Profile: Scopus
Featured Publications: 
  1. Experimental study of the effects of contact loss under a shield tunnel invert. (2024). Cited by 2.

  2. Coupled Eulerian-Lagrangian simulation of progressive failure in shield tunnels induced by developing contact loss. (2024). Cited by 8.