Chuanshan Dai | Thermal Energy Enginnering | Best Researcher Award

Prof. Dr. Chuanshan Dai | Thermal Energy Enginnering | Best Researcher Award

Professor at Tianjin University, China

Professor Chuanshan Dai currently serves as Professor and Director at the Tianjin Geothermal Research and Training Center within the School of Mechanical Engineering at Tianjin University. A recognized leader in geothermal engineering and sustainable energy systems, Professor Dai has devoted decades to advancing renewable energy solutions, particularly in the fields of heat transfer and geothermal resource utilization. His expertise in both academic research and practical engineering has had a significant impact on the development of clean energy strategies in China and globally. With over 30 years of experience, his academic and applied contributions continue to shape innovative geothermal technologies and influence policy development in renewable energy management.

Profile

Scopus

EDUCATION

Professor Dai began his academic journey at Tianjin University, where he received his Bachelor of Science in 1985. He continued to advance his expertise in thermal sciences by earning a Master of Science from Harbin Institute of Technology in 1988. Driven by an enduring passion for geothermal systems, he pursued a Ph.D. at Okayama University in Japan, which he completed in 2003. Throughout his educational path, he secured prestigious fellowships, including from the Geothermal Institute at Auckland University (New Zealand, 1990), the United Nations University Geothermal Training Programme (Iceland, 1992), and the Monbusho Fellowship from the Japanese government (1999–2003), highlighting his international recognition and cross-border expertise.

EXPERIENCE

With decades of professional and academic service, Professor Dai has played a pivotal role in research and training initiatives focused on geothermal energy. As a faculty member and director at Tianjin University, he has led critical projects in heat transfer optimization, multiphase flow, and district heating. His academic responsibilities include teaching courses such as “Numerical Heat Transfer,” “Multiphase Flow and Heat Transfer,” “Energy Resources and Management,” and “Geothermal Heat Pump.” These courses span both undergraduate and postgraduate levels and emphasize his commitment to nurturing the next generation of energy engineers. He also contributes to policy consultation and infrastructure planning, bridging the gap between theoretical research and field applications.

RESEARCH INTEREST

Professor Dai’s research interests focus on geothermal energy systems, including heat extraction technologies, ground source heat pump systems, district heating solutions, and numerical modeling of heat and mass transfer. His investigations have led to breakthroughs in lattice Boltzmann methods, natural circulation loops, and open-loop deep geothermal wells. His integrated approach combines computational simulation, experimental validation, and applied engineering to improve the efficiency and sustainability of thermal energy systems. He is particularly known for optimizing the thermal performance of borehole heat exchangers and enhancing district heating systems with renewable sources.

AWARD

Professor Dai has been consistently recognized for his contributions to the field of geothermal engineering. His international fellowships in New Zealand, Iceland, and Japan reflect his early promise and sustained excellence. He has also been nominated and honored in various scientific and academic platforms for his leadership in renewable energy research. His educational outreach and innovation have earned him nominations for national and institutional awards, acknowledging both his technical competence and mentorship in the energy sector.

PUBLICATION

Professor Dai’s research has led to numerous high-impact publications, with several cited widely in the geothermal and energy engineering communities. His recent co-authored article, “An implicit lattice Boltzmann flux solver with a projection-based interpolation scheme for the convection-diffusion equation,” published in Computers and Mathematics with Applications (2024), addresses simulation accuracy for heat transfer. Another 2024 work in Renewable Energy, “Optimization of a district heating system coupled with a deep open-loop geothermal well and heat pumps,” offers practical solutions for energy efficiency. In 2022, he co-authored “Analyses and reconstruction of the lattice Boltzmann flux solver,” in the Journal of Computational Physics, cited for improving solver performance. His 2019 article in Applied Energy, “An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design,” has influenced geothermal system design strategies. His 2020 publication in the International Journal of Heat and Mass Transfer, “Heat transfer enhancement based on single phase natural circulation loops,” is referenced for its thermal management techniques. Another 2022 study in Geothermics, “The influence of thermal boundary conditions of wellbore on the heat extraction performance of deep borehole heat exchangers,” provides key insights for system efficiency. These works are widely cited and have made significant scholarly impact in both theoretical and applied energy engineering.

CONCLUSION

Chuanshan Dai exemplifies the qualities of a top-tier researcher through his academic excellence, international fellowships, influential teaching, and pioneering research. His deep commitment to sustainable energy and heat transfer research, along with his global impact and leadership, make him an outstanding candidate for the Research for Best Researcher Award.

Zakaria OUAOUJA | Sustainable Thermal Energy Storage | Best Researcher Award

Mr Zakaria OUAOUJA | Sustainable Thermal Energy Storage | Best Researcher Award

PhD, ONIRIS VetAgroBio, France

Zakaria Ouaouja is a dedicated researcher specializing in energy optimization and phase change materials (PCMs) for cold thermal energy storage and energy-efficient building systems. Currently pursuing a PhD in Engineering and Systems Sciences at ONIRIS VetAgroBio Nantes Atlantique in France, Zakaria’s work focuses on integrating PCMs into cold storage applications to enhance energy efficiency. With a Master’s degree in Advanced Materials and Renewable Energies, he has contributed significantly to the development of PCM solutions for sustainable energy practices. His research includes numerically analyzing the energy impact of PCM integration in buildings and reviewing bio-based PCM alternatives. Zakaria’s commitment to advancing energy solutions is demonstrated through various publications and ongoing projects in renewable energy and thermal management.

PROFESSIONAL PROFILE

Orcid

STRENGTHS FOR THE AWARDS

Zakaria Ouaouja’s research stands out in several key areas, particularly in the innovative integration of phase change materials (PCMs) for energy optimization in cold storage and building systems. His focus on PCM for energy storage, coupled with his work on bio-based alternatives, addresses both environmental sustainability and energy efficiency. Zakaria’s ability to collaborate with experts across disciplines is evident in his publications, such as those in the Journal of Energy Storage and Journal of Atomic, Molecular, Condensed Matter and Nano Physics. His research has significant practical implications, offering solutions for reducing energy consumption in refrigeration and building systems, crucial for advancing renewable energy technologies. His academic trajectory, from his Master’s to his current PhD, and his presence at international conferences further underline his dedication and expertise in the field.

AREAS FOR IMPROVEMENTS

While Zakaria has shown commendable promise in his research contributions, there are areas where further development could enhance his profile for the Best Researcher Award. Expanding the scope of his research to include more real-world applications or pilot projects of PCM integration would provide a stronger demonstration of the impact of his work. Collaborating with industry professionals to implement his findings in actual energy systems could solidify his standing in both academia and industry. Additionally, increasing the frequency of high-impact publications and seeking more interdisciplinary collaborations could elevate the visibility and impact of his research.

EDUCATION

Zakaria Ouaouja is currently pursuing a PhD in Engineering and Systems Sciences (2022 – Present) at ONIRIS VetAgroBio Nantes Atlantique, Nantes, France. His research centers on “Energy optimization of cold rooms through integration of phase change material.” Prior to his PhD, he earned a Master’s degree in Advanced Materials and Renewable Energies (2019) from Moulay Ismail University, Meknes, Morocco. His Master’s thesis was titled “Phase Change Materials: Towards energy efficiency in buildings, a parametric study.” Zakaria also holds a Bachelor’s degree in Fundamental Physics from the same university (2013–2017). His academic journey demonstrates his strong foundation in renewable energy, advanced materials, and energy-efficient technologies.

EXPERIENCE

Zakaria Ouaouja has gained extensive experience in the field of energy optimization and phase change materials (PCMs). His current PhD research focuses on optimizing cold room energy systems through the integration of PCMs. Prior to this, he worked on various projects related to the application of PCMs in building energy efficiency during his Master’s studies. His work involves theoretical analysis, numerical modeling, and practical applications of energy-saving materials. Zakaria’s research also includes the review of bio-based PCMs as alternatives to conventional materials in thermal energy storage applications. His collaborations with leading experts and contributions to various conferences and publications demonstrate his proficiency in applying advanced materials and renewable energy solutions to real-world problems.

AWARDS AND HONORS

Zakaria Ouaouja has received recognition for his outstanding contributions to the field of energy optimization and renewable materials. He has been recognized for his innovative research on phase change materials and energy efficiency. His work has led to multiple publication opportunities in high-impact journals, such as the Journal of Energy Storage and Journal of Atomic, Molecular, Condensed Matter and Nano Physics. He has also been invited to present at international conferences, showcasing his research on energy-efficient technologies and PCM applications. Zakaria’s dedication to research excellence continues to earn him accolades and opportunities to collaborate with global experts in sustainable energy solutions.

RESEARCH FOCUS

Zakaria Ouaouja’s research focuses on the integration of phase change materials (PCMs) for energy optimization in cold storage and building systems. His PhD research aims to enhance the energy efficiency of cold rooms by integrating PCMs, while his Master’s thesis explored PCM applications for improving energy efficiency in buildings. Zakaria also investigates bio-based alternatives to conventional PCMs, contributing to the development of sustainable and environmentally friendly materials for thermal energy storage. His work is central to advancing the practical use of renewable energy materials in the fields of energy storage, refrigeration, and building energy optimization, offering innovative solutions for global energy challenges.

PUBLICATION TOP NOTES

  1. “Phase Change Materials for Cold Thermal Energy Storage Applications: A Critical Review of Conventional Materials and the Potential of Bio-based Alternatives.” Journal of Energy Storage, 2025. 🌱💡
  2. “Inverse Method for Estimating Thermal Properties of Phase Change Material Using Levenberg-Marquardt Method.” 4th International Conference on Innovative Research in Applied Science, Engineering, and Technology (IRASET), 2024. 🔍📊
  3. “Energy Efficiency in Buildings: Numerical Study of the Impact of Integrating Phase Change Materials Into the Walls.” Journal of Atomic, Molecular, Condensed Matter and Nano Physics, 2020. 🏢🌡

CONCLUSION

Zakaria Ouaouja is a promising researcher with a clear commitment to solving energy efficiency challenges through phase change materials. His research contributions, particularly in bio-based PCM alternatives, have the potential to shape the future of energy storage and building systems. While there are opportunities for broader application and visibility, his current achievements demonstrate his strong candidacy for the Best Researcher Award. His innovative approach to sustainable energy solutions, coupled with a strong academic foundation, places him on a trajectory toward continued success and recognition in the field.

 

Adnan Ibrahim | Sustainable Energy Technology | Best Researcher Award Universiti Kebangsaan Malaysia

Assist. Prof. Dr Adnan Ibrahim | Sustainable Energy Technology | Best Researcher Award

Research Fellow, Universiti Kebangsaan Malaysia, Malaysia

Adnan Ibrahim is an Associate Professor specializing in Renewable Energy at Universiti Kebangsaan Malaysia. Renowned for his pioneering work in solar energy and thermal systems, he has contributed significantly to photovoltaic thermal (PVT) technologies and nanofluid-based solar applications. With over a decade of academic and industrial experience, he has published extensively in top-tier journals and presented at international conferences. His research emphasizes innovative solutions to enhance the efficiency and sustainability of energy systems. Dr. Ibrahim’s collaborations with global experts have established him as a thought leader in renewable energy technologies.

PROFILE

Google scholar

Orcid

Scopus

STRENGTHS FOR THE AWARD

  1. Expertise in Renewable Energy: Dr. Adnan Ibrahim is an accomplished academic in Renewable Energy with a Ph.D. from UKM, focusing on Solar Energy Technology and Building Integrated Photovoltaic Thermal Systems (BIPVT).
  2. Prolific Research Output: His work is well-cited, with notable contributions in photovoltaic thermal (PVT) technology, including hybrid systems, nanofluids, and nano-PCM-based advancements.
  3. High Impact Publications: Several of his publications have citations exceeding 500, demonstrating significant influence in the field.
  4. Innovation and Interdisciplinary Work: Research on nanofluid and nano-PCM, as well as passive cooling PV modules with fins and planar reflectors, showcases innovation in enhancing energy efficiency and sustainability.
  5. International Collaboration: Extensive collaborations with researchers worldwide, adding diversity and a global perspective to his research.
  6. Academic Leadership: As an Associate Professor at Universiti Kebangsaan Malaysia, he is actively involved in teaching and mentoring, contributing to the academic community.
  7. Relevance and Applicability: His work in energy economic analysis and system optimization addresses real-world challenges in renewable energy implementation.

AREAS FOR IMPROVEMENTS

  1. Broadening Research Applications: Expanding research to include emerging technologies such as hydrogen-based energy systems or carbon capture integration could further solidify his leadership in renewable energy.
  2. Outreach and Policy Impact: Greater emphasis on translating research into actionable policies and industry practices would enhance societal impact.
  3. Grants and Industry Partnerships: Strengthening partnerships with industrial stakeholders for applied research could bolster funding and practical adoption.

EDUCATION

📚 Ph.D. in Renewable Energy (2007-2012) – Universiti Kebangsaan Malaysia (UKM), Malaysia
📚 M.Sc. in Integrated Product Development (2000-2002) – University of Warwick, United Kingdom
📚 B.Eng. in Manufacturing System Engineering (1998-2000) – University of Birmingham, United Kingdom

EXPERIENCE

👨‍🏫 Associate Professor – Universiti Kebangsaan Malaysia, specializing in renewable energy systems and sustainable technologies.
🔬 Lead Researcher – Multiple projects on PVT technologies, building-integrated solar systems, and nanofluid applications.
🌍 International Collaborator – Partnering with global institutions to advance solar thermal research.
📖 Mentor and Educator – Supervising postgraduate students and delivering impactful lectures on energy sustainability.

AWARDS AND HONORS

🏆 Best Researcher Award – Recognized for outstanding contributions to renewable energy innovation.
🌟 Top Cited Researcher – Multiple papers ranked among the most cited in energy conversion and management journals.
💡 Innovation Excellence Award – Acknowledged for groundbreaking advancements in PVT system technologies.
🎓 Outstanding Educator Award – Celebrated for exceptional teaching and mentoring in renewable energy.

RESEARCH FOCUS

☀️ Solar Energy – Advancing photovoltaic thermal (PVT) systems for higher energy efficiency.
🌡️ Thermal Systems – Developing nanofluid and nano-PCM-based collectors for sustainable applications.
🏢 Building-Integrated Systems – Innovating BIPVT systems for residential and commercial energy solutions.
🔬 Energy Optimization – Focusing on exergy and thermal analysis for optimal system performance.

PUBLICATION TOP NOTES

📄 Performance analysis of photovoltaic thermal (PVT) water collectors
📄 Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors
📄 Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study
📄 Efficiencies and improvement potential of building-integrated photovoltaic thermal (BIPVT) system
📄 Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network
📄 Performance of photovoltaic thermal collector (PVT) with different absorbers design
📄 Energy and exergy analyses of photovoltaic thermal collector with ∇-groove
📄 Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study
📄 Evaluation of Single-Pass Photovoltaic Thermal Air Collector With Rectangular Tunnel Absorber
📄 Hybrid Photovoltaic Thermal (PV/T) Air and Water-Based Solar Collectors Suitable for Building Integrated Applications

CONCLUSION

Dr. Adnan Ibrahim’s significant academic contributions, innovative research in solar energy technology, and dedication to advancing renewable energy systems make him a strong candidate for the Best Researcher Award. By addressing areas such as policy impact and industrial collaboration, he could further enhance his already impressive profile. Overall, his achievements position him as a deserving recipient of this honor.