Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assist. Prof. Dr Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assistant Professor, Concordia University, Canada

Dr. Hang Xu is an Assistant Professor in the Department of Mechanical, Industrial, and Aerospace Engineering at Concordia University, Montreal, Canada. With a Ph.D. in Mechanical Engineering from McGill University and an MSc in Aircraft Design from Beijing University of Aeronautics and Astronautics, Dr. Xu specializes in mechanical metamaterials, smart structures, and additive manufacturing. His research focuses on developing advanced materials with programmable morphing and motion for aerospace, medical, and robotic applications. Prior to joining Concordia, he held research positions at Imperial College London and Siemens, contributing to innovations in multi-stable structures, soft robotics, and medical devices. Dr. Xu is recognized for his teaching excellence and has received awards for his contributions to research during the COVID-19 pandemic.

Professional Profile

Orcid

Scopus

Education 🎓

  • Doctorate in Mechanical Engineering, McGill University (2013–2018)
    Supervisor: Damiano Pasini
  • Master’s Thesis in Aircraft Design, Beijing University of Aeronautics and Astronautics (2011–2013)
    Supervisor: Yuanming Xu
  • Bachelor’s in Aircraft Design and Engineering, Shenyang Aerospace University (2007–2011)
    Supervisor: Weiping Zhang

Experience 💼

  • Assistant Professor, Concordia University (2022–Present)
    Research on functional/smart metamaterials for aerospace, nautical, and medical applications.
  • Research Associate, Imperial College London (2020–2022)
    Developed multi-stable structures, soft robots, and medical devices.
  • Postdoctoral Researcher, McGill University (2018–2020)
    Worked on thermally actuated deployable mechanisms and additive manufacturing processes.
  • Internships: Chinese Aircraft Design Institute of Aviation Medicine (2012–2013) and Shenyang Aircraft Design Institute (2010–2011).

Awards and Honors 🏆

  • Teaching Excellence Award, Concordia University (2023)
  • Associate Fellowship of the Higher Education Academy (AFHEA), UK (2022)
  • Excellent Contribution to Research in COVID-19 Pandemic, Imperial College London (2021)
  • Winner of 3D-Printing Workshop Design Challenge, McGill University (2019)

Research Focus 🔬

Dr. Xu’s research focuses on mechanical metamaterialssmart materials and structures, and additive manufacturing. His work aims to develop materials with programmable morphing and motion for applications in aerospace structuressoft roboticsmedical devices, and composite materials. Key areas include multiscale mechanics, finite element analysis, and the design of multi-stable structures for innovative functionalities.

Publication Top Notes 📚

  1. Embedded pressure sensing metamaterials using TPU-graphene composites and additive manufacturing
  2. Generalized tessellations of superellipitcal voids in low porosity architected materials for stress mitigation
  3. Thermally actuated hierarchical lattices with large linear and rotational expansion
  4. Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  5. ABAQUS user subroutine UMAT for elastoplastic nonlinear kinematic hardening material (Mróz model) with anisotropic plasticity
  6. Digitally Programmable Architected Materials with Static and Dynamic Reconfiguration
  7. Multi-stable meta-materials with programmable reconfigurations for soft robots
  8. 3D printed soft metamaterial force sensors for gait monitoring using TPU-graphene composites
  9. Overcoming the strength-modulus tradeoff using double network metamaterial lattices
  10. Multi-stable architectured materials with high-mobility morphing

Conclusion 🌟

Dr. Hang Xu is a leading researcher in mechanical metamaterials and smart structures, with a strong focus on innovative applications in aerospace, robotics, and medical devices. His contributions to teaching, research, and industry collaborations highlight his commitment to advancing materials science and engineering. Through his work, Dr. Xu continues to push the boundaries of programmable materials, paving the way for future technological advancements. 🚀

 

Muhammad Aqeel | Structural Analysis | Best Researcher Award

Dr Muhammad Aqeel | Structural analysis | Best Researcher Award

Associate Profeesor, Jiangsu Maritime Institute, China

Dr. Muhammad Aqeel is an accomplished Associate Professor at Jiangsu Maritime Institute, Nanjing, China, specializing in Naval Architecture and Intelligent Manufacturing. With a Ph.D. in Mechanical Engineering (Thermal Engineering) from North China Electric Power University, Beijing, he has extensive expertise in wind turbine blade optimization, fluid-structure interaction, and renewable energy systems. Previously, he served as an Assistant Professor at the Institute of Space Technology, Islamabad, Pakistan, where he contributed to teaching, research, and lab development. His industrial experience includes roles as an O&M Engineer at Ecopack Limited, focusing on thermal power plant operations. Dr. Aqeel has published numerous high-impact journal articles, secured a patent, and received accolades for his teaching and research excellence. His work bridges theoretical innovation and practical applications in energy systems, fluid dynamics, and structural health monitoring.

Professional Profile

Google Scholar

Scopus

Education  🎓

  • Ph.D. in Mechanical Engineering (Thermal Engineering), North China Electric Power University, Beijing, China (2016–2020). Dissertation: The Interaction Theory of Flowing Air and Wind Turbine Blade and Its Application.
  • Master of Sciences in Energy Management, COMSATS Institute of Information Technology, Islamabad, Pakistan (2013–2015). Dissertation: Synthetic Natural Gas: An Alternative Energy Option for Natural Gas.
  • Bachelor’s in Mechanical Engineering Technology (Honors), Preston University, Islamabad, Pakistan (2007–2011). Final Project: Design and Fabrication of a Vertical-Axis Wind Turbine.
  • Recipient of the Chinese Government Scholarship (2016–2020) and Merit Scholarship during MS studies.

Experience 💼

  • Associate Professor, Jiangsu Maritime Institute, Nanjing, China (2023–Present). Teaching mechanical engineering courses and conducting research in naval architecture and intelligent manufacturing.
  • Assistant Professor, Institute of Space Technology, Islamabad, Pakistan (2016–2023). Taught mechanical engineering courses, supervised thesis projects, and developed labs (e.g., Fluid Mechanics, Statics, and Dynamics).
  • Lecturer, Swedish College of Engineering and Technology, Pakistan (2015–2016). Delivered courses and assisted in research proposal development.
  • O&M Engineer, Ecopack Limited, Pakistan (2009–2014). Managed operations and maintenance of thermal power plant equipment, including steam turbines, boilers, and heat exchangers.

Awards and Honors 🏆

  • Best Teaching Award, Institute of Space Technology, Islamabad, Pakistan.
  • Study Excellence Certificate, North China Electric Power University, Beijing, China.
  • Chinese Government Scholarship (4 years) for Ph.D. studies.
  • Merit Scholarship during MS studies at COMSATS Institute of Information Technology.
  • Secured Technology Development Fund (TDF) worth 14 million PKR from the Higher Education Commission, Pakistan.
  • Recognized for organizing international conferences on Robotics, Artificial Intelligence, and Applied Science & Engineering.

Research Focus 🔬

Dr. Aqeel’s research focuses on thermal engineering, fluid-structure interaction, and renewable energy systems. His work includes:

  • Optimizing wind turbine blade design for improved aerodynamic performance and energy conversion.
  • Developing theoretical models for blade chord and twist angle optimization.
  • Investigating fluid dynamics in wind turbines and heat exchangers.
  • Exploring structural health monitoring using flexible strain sensors.
  • Analyzing soil erosion on steep hills and its environmental impact.
  • Contributing to chaos theory and synchronization in dynamical systems.

Publication Top Notes 📚

  1. Soil erosion on steep hills with varying vegetation patterns [J] Physics of Fluids (2025).
  2. Development of AgNPs-PVP/TPU based flexible strain sensors for structural health monitoring [J] Results in Engineering (2024).
  3. Integer and fractional order analysis of a 3D system and generalization of synchronization [J] Chaos, Solitons & Fractals (2022).
  4. Generation of Multidirectional Mirror Symmetric Multiscroll Chaotic Attractors [J] Chaos, Solitons & Fractals (2022).
  5. Theoretical prediction of wear of disc cutters in tunnel boring machines [J] Journal of Rock Mechanics and Geotechnical Engineering (2018).
  6. Dynamical and fractal properties in periodically forced stretch-twist-fold flow [J] Chinese Journal of Physics (2017).
  7. Analogy Theory and application of pressure difference of wind turbine blade profile [J] Journal of Harbin Institute of Technology (2020).
  8. Study on characteristics of the interaction between flowing air and wind turbine blade [J] Journal of China Institute of Water Resources and Hydropower Research (2017).
  9. New Theory and Method for Improving Utilization and Conversion Rate of Wind Turbine [J] Journal of Basic Science and Engineering (2017).
  10. Force analysis of fan blade surface based on Wilson method [C] 14th Annual Academic Exchange Conference of North China Electric Power University (2017).
  11. SNG and N2 comparison and Alternative energy option [C] 1st International Conference on Energy Systems for Sustainable Development (2015).

Conclusion 🌟

Dr. Muhammad Aqeel is a distinguished academic and researcher with a strong background in mechanical engineering, thermal systems, and renewable energy. His contributions to wind turbine optimization, fluid dynamics, and structural health monitoring have been widely recognized through high-impact publications, patents, and awards. With a blend of industrial and academic experience, he continues to drive innovation in energy systems and engineering education, making significant strides in sustainable technology development.

Francesco Ruggiero | Applied Physics of the Built Environment | Best Researcher Award

Prof Francesco Ruggiero | Applied Physics of the built environment | Best Researcher Award

Professor of Applied Physics of the built environment, Politecnico di Bari, Italy

Francesco Ruggiero is an esteemed academic and researcher based in Italy, currently serving as a Professor at the Politecnico di Bari, Department of Architecture, Construction, and Design. His extensive expertise spans sustainable building design, energy efficiency, and innovative retrofitting strategies. Over the years, he has contributed significantly to environmental sustainability through his research and numerous scholarly publications.

PROFESSIONAL PROFILE

Orcid

Scopus

🎓 EDUCATION

Francesco Ruggiero earned his degrees in architecture and building engineering from prestigious Italian universities, with a strong focus on sustainable design and technological innovation in architecture. His academic journey reflects a deep commitment to integrating environmental principles into the built environment, shaping the next generation of architects and researchers.

💼 EXPERIENCE

Since 2000, Ruggiero has held various positions at the Politecnico di Bari, progressing from a Researcher in the Department of Technical Physics to a full Professor in the Department of Architecture, Construction, and Design. His career is marked by a dedication to teaching, research, and collaboration on national and international projects aimed at improving energy efficiency and sustainability in architecture.

🏆 AWARDS AND HONORS

Throughout his career, Francesco Ruggiero has received numerous awards and honors recognizing his contributions to sustainable architecture and building energy efficiency. His innovative research and leadership in environmental design have earned him accolades both in Italy and internationally.

🔬 RESEARCH FOCUS

Ruggiero’s research focuses on sustainable building technologies, energy-efficient retrofitting, natural ventilation strategies, and phase-change materials in Mediterranean climates. He actively collaborates with international teams, contributing to advancing knowledge in environmental sustainability and resilient architecture.

📚 PUBLICATION TOP NOTES

  • 📖 CFD Analysis of the Impact of Building Shape on Natural Ventilation Effectiveness in High-Rise Buildings
  • 🌞 From energy-intensive buildings to NetPlus targets: An innovative solar exoskeleton for the energy retrofitting of existing buildings
  • 🌬️ Influence of cross-ventilation cooling potential on thermal comfort in high-rise buildings in a hot and humid climate
  • 🏠 Natural ventilation effectiveness in low-income housing to challenge energy poverty
  • 🔄 Assessing the Potential of Phase-Change Materials in Energy Retrofitting of Existing Buildings in a Mediterranean Climate
  • ☀️ “En-Solex”: A Novel Solar Exoskeleton for the Energy-efficiency Retrofitting of Existing Buildings
  • 💨 Evaluation of mixed mode ventilation cooling energy saving potential in nZEB: A case study in Southern Italy
  • 🌐 The efficiency of hybrid ventilation on cooling energy savings in NZEBs
  • 🏜️ Exploring building’s envelope thermal behavior of the neo-vernacular residential architecture in a hot and dry climate region of Algeria
  • 🏗️ A Dissipating Frames for Seismic Retrofitting and Building Energy-Efficiency

CONCLUSION

Francesco Ruggiero’s distinguished career in sustainable architecture, energy efficiency, and environmental design continues to influence academic research and practical applications globally. His dedication to fostering innovative solutions for a greener future highlights his role as a pioneer in the field, inspiring both peers and students alike.

 

 

Fenglan Kuang | Construction Materials | Best Researcher Award

Dr Fenglan Kuang | Construction Materials | Best Researcher Award

Professor, Xiangtan University, China

Fenglan Kuang is a dedicated researcher specializing in the mechanical behavior and design of new materials. She holds a Ph.D. and M.S. from Xiangtan University, with extensive expertise in dynamic impact mechanics and microstructure property control of heterogeneous materials. Her work is marked by numerous contributions to high-impact journals, showcasing advancements in material design, including rubberized geopolymer mortars and advanced semiconductor technologies.

PROFESSIONAL PROFILE

Orcid

Scopus

STRENGTHS FOR THE AWARD

  1. Educational Excellence:
    Fenglan Kuang completed her Ph.D. and Master’s degrees at Xiangtan University, focusing on the mechanical behavior and design of new materials. This strong academic foundation aligns well with her research in material science.
  2. Diverse Research Areas:
    Her expertise in dynamic impact mechanical behavior, microstructure property control of heterogeneous materials, and material design reflects a deep understanding of high-demand scientific fields.
  3. Significant Research Contributions:
    • She has published extensively in high-impact journals, including:
      • Surfaces and Interfaces (2024) on high-performance ultrathin solution-processed SnO2 thin-film transistors.
      • Construction and Building Materials and Journal of Building Engineering on rubberized geopolymer mortar, showcasing expertise in sustainable construction materials.
      • Nuclear Instruments and Methods in Physics Research, A for her work on detector modeling and simulations.
    • Her research outputs demonstrate innovation and relevance to contemporary scientific challenges.
  4. Interdisciplinary Approach:
    Her work spans multiple disciplines, including materials science, mechanical engineering, and computational modeling, highlighting her ability to integrate knowledge for impactful solutions.
  5. Problem-Solving with Advanced Tools:
    Fenglan’s application of machine learning (e.g., back-propagation neural networks) for modeling composite geopolymers reflects her commitment to leveraging modern tools for research advancements.

AREAS FOR IMPROVEMENT

  1. Broader Collaboration:
    While her work involves multiple contributors, engaging in larger international collaborations could further amplify her research impact and visibility.
  2. Application-Oriented Research:
    Emphasizing real-world applications of her research findings, especially in industrial settings, could strengthen her profile.
  3. Outreach and Recognition:
    Presenting at more international conferences and securing leadership roles in scientific forums would help in establishing her as a global thought leader.

EDUCATION

Fenglan Kuang earned her Ph.D. in Mechanical Behavior and Design of New Materials from Xiangtan University (2019–2023). She also completed her M.S. in the same field at Xiangtan University (2017–2019), demonstrating a strong focus on innovative material applications. Her academic foundation emphasizes interdisciplinary approaches to understanding and improving material mechanics.

EXPERIENCE

Dr. Kuang currently serves at Liming Vocational University, where she applies her expertise in material mechanics to education and research. Her career highlights include significant contributions to the understanding of heterogeneous material dynamics and their real-world applications.

AWARDS AND HONORS

Fenglan Kuang has been recognized for her outstanding academic and research contributions. Her accolades include awards for innovative research in material mechanics and high-performance geopolymers.

RESEARCH FOCUS

Her research revolves around dynamic impact mechanical behavior and the microstructure property control of heterogeneous materials. She explores advanced applications such as rubberized geopolymer mortars and high-temperature performance of innovative composites.

PUBLICATION TOP NOTES

  • 📘 High-performance ultrathin solution-processed SnO₂ top-gate thin-film transistors by constructing high-quality dielectric/channel interface
  • 📗 DEM study on the effect of pore characteristics on single particle crushing behavior of porous particles
  • 📘 Modeling the single particle crushing behavior by random discrete element method
  • 📗 Experimental study on high-temperature performance of rubberized geopolymer mortar
  • 📘 Experimental study on preparation and properties of low content rubberized geopolymer mortar
  • 📗 Application of backpropagation neural network to the modeling of slump and compressive strength of composite geopolymers
  • 📘 Systematic modeling and simulations with analytical solutions of electric and weighting fields of 2D-Planar-Electrode and 3D-Trench-Electrode detectors
  • 📗 Simulations of electrical properties of cylindrical 3D-trench electrical Si detectors under different radiation fluences and MIP incident position

CONCLUSION

Fenglan Kuang is a strong candidate for the Best Researcher Award due to her outstanding educational background, interdisciplinary research contributions, and impactful publications. Her work on cutting-edge topics like heterogeneous materials and sustainable construction has significant societal and industrial relevance. With minor improvements in global collaborations and outreach, her profile can reach new heights, making her an exemplary researcher worthy of this recognition.

Masoud Akbarzadeh | Architectural Structures | Best Researcher Award

Assoc. Prof. Dr Masoud Akbarzadeh | Architectural Structures | Best Researcher Award

Associate Professor of Architecture, University of Pennsylvania, United States

Masoud Akbarzadeh is an Associate Professor of Architecture in Structures at the University of Pennsylvania’s School of Design. With a background in civil and environmental engineering, architecture, and structural design, Akbarzadeh’s work bridges the gap between computational design, architecture, and engineering. He has gained recognition for his research on 3D graphic statics, funicular structures, and computational methods for optimizing structural forms. His innovative approach to structural design blends geometry, machine learning, and material science to create sustainable and efficient solutions in architecture and engineering. Akbarzadeh has contributed significantly to academic journals and conferences, influencing the future of design and construction.

Profile

Google Scholar

Orcid

Strengths for the Award

Masoud Akbarzadeh is an exceptionally qualified candidate for the Best Researcher Award due to his pioneering contributions to structural design, computational design, and material science. His research focuses on advanced topics such as 3D graphic statics, funicular structures, and the intersection of machine learning with structural design. Akbarzadeh has demonstrated expertise in creating innovative structural forms through geometric optimization, form-finding techniques, and the development of ultra-thin, sustainable materials like glass shells. He has received numerous prestigious awards, including the 2020 National Science Foundation CAREER Award, A’Design Award, and multiple cover highlights in leading journals like Advanced Science and Advanced Functional Materials. His interdisciplinary approach, which bridges architecture, engineering, and computational design, sets him apart in the field. His influential publications have garnered high citations, reflecting the significant impact of his work on both academic research and practical applications in construction.

Areas for Improvement

While Akbarzadeh’s research demonstrates a remarkable fusion of architecture, structural engineering, and computational techniques, there are potential areas for further exploration and improvement:

  1. Broader Practical Implementation: While his work focuses on theoretical and experimental design, expanding the real-world applications of these designs in large-scale projects and construction could strengthen his contributions.
  2. Collaboration with Industry: Strengthening collaborations with industry professionals to create tangible prototypes and test the viability of his designs in diverse environments could enhance his impact.
  3. Cross-Disciplinary Integration: Further expanding into interdisciplinary fields such as environmental sustainability, biomimicry, and automation in construction could open up new avenues for his research and applications.

Education 

Masoud Akbarzadeh holds a Doctor of Science (2016) from ETH Zurich, Switzerland, where he specialized in 3D graphic statics and structural design. He earned two Master’s degrees from the Massachusetts Institute of Technology (MIT): a Master of Science in Design Computation (2012) and a Master of Architecture (2011). Earlier, he obtained a Master of Science in Earthquake Engineering and Dynamics of Structures (2007) from Iran University of Science and Technology, Tehran. His educational background combines architecture, civil engineering, and advanced computational methods, establishing him as an expert in structural design and its intersection with computational tools and techniques. His academic achievements are complemented by his deep research in the fields of material science and geometric optimization.

Experience 

Masoud Akbarzadeh is currently an Associate Professor at the University of Pennsylvania’s School of Design, focusing on architecture and structures. Prior to this, he has held various academic and research positions at leading institutions such as ETH Zurich, MIT, and Iran University of Science and Technology. Akbarzadeh’s work centers on advanced structural design, including 3D graphic statics, machine learning applications, and the development of innovative material systems. He has led interdisciplinary projects aimed at optimizing architectural structures through computational methods, including the design of lightweight, efficient, and sustainable materials. His expertise spans architectural design, structural optimization, and computational fabrication, with a particular emphasis on creating new forms of structures that combine art and engineering. He has also mentored numerous students and young researchers, contributing to the academic growth of the field.

Awards and Honors 

Masoud Akbarzadeh has received numerous accolades for his groundbreaking work in architecture and structural design. In 2023, his paper on “Dragonfly-Inspired Wing Design Enabled by Machine Learning and Maxwell’s Reciprocal Diagrams” was featured as a Cover Highlight in Advanced Science. His 2022 paper on “Strut-Based Cellular to Shellular Funicular Materials” was also highlighted in Advanced Functional Materials. He was awarded the 2022 DigitalFUTURES Best Project Award for his ultra-thin hollow glass shell prototype, Tortuca, which was also longlisted in the Dezeen Awards and won the ARCHITECT R+D Award. Other notable achievements include the prestigious National Science Foundation CAREER Award (2020), the A’Design Silver Award for Saltatur: The Dancer (2020), and the SOM Traveling Fellowship for Architecture in 2011. His recognition across various platforms attests to his leadership and innovative contributions to the field of architecture and structural engineering.

Research Focus

Masoud Akbarzadeh’s research focuses on the intersection of computational design, structural optimization, and material science. His primary interest lies in 3D graphic statics, which involves the geometric and force-based analysis of structural systems, specifically focusing on the use of polyhedral reciprocal diagrams. Akbarzadeh explores the application of machine learning in structural design, enabling smarter and more efficient evaluation processes for complex construction methods. He is particularly interested in form-finding methods for funicular structures and how they can be applied to new materials such as ultra-thin glass shells and cellular solids. His work also delves into the design of architected materials that balance aesthetic considerations with structural performance. Additionally, he investigates the integration of machine learning into form-finding and optimization processes, aiming to create sustainable and innovative solutions in architecture and engineering. His research bridges the gap between computational modeling, material science, and structural design.

Publication Top Notes

  • On the equilibrium of funicular polyhedral frames and convex polyhedral force diagrams 🏗️
  • Prototype of an ultra-thin, concrete vaulted floor system 🏛️
  • Machine learning assisted evaluations in structural design and construction 🤖
  • 3D graphical statics using reciprocal polyhedral diagrams 📐
  • Algebraic 3D graphic statics: Reciprocal constructions 🔢
  • Polyframe, efficient computation for 3d graphic statics ⚙️
  • 3D graphic statics: geometric construction of global equilibrium 🌍
  • Strut‐Based Cellular to Shellular Funicular Materials 🌿
  • 3D Graphical Statics 📊
  • On structural behavior of a funicular concrete polyhedral frame designed by 3D graphic statics 🏢
  • Three-dimensional compression form finding through subdivision 📏
  • Compression-only form finding through finite subdivision of the external force polygon ⚒️
  • Graphic statics in a continuum: Strut-and-tie models for reinforced concrete 🧱
  • The design of an ultra-transparent funicular glass structure 🪟
  • Spatial compression-only form finding through subdivision of external force polyhedron 📐
  • Geometry-based structural form-finding to design architected cellular solids 🔲
  • Effect of Subdivision of Force Diagrams on the Local Buckling, Load-Path and Material Use of Founded Forms 💪

Conclusion

Masoud Akbarzadeh stands out as a leading figure in the field of structural design, with a research portfolio that integrates cutting-edge computational methods, innovative material applications, and sustainable design practices. His significant academic achievements, numerous awards, and highly cited publications demonstrate both the quality and relevance of his work. Although there are areas where his research could expand to real-world applications and interdisciplinary fields, his current contributions position him as a deserving candidate for the Best Researcher Award. His work promises to continue shaping the future of architecture and structural engineering, making a lasting impact on the field.

Florindo Gaspar | Civil Engineering | Best Researcher Award

Mr. Florindo Gaspar | Civil Engineering | Best Researcher Award

Professor, Polytechnic Institute of Leiria, Portugal

🌍 Florindo Gaspar is a Professor at the Civil Engineering Department, School of Technology and Management (Polytechnic Institute of Leiria – IPLeiria). With a strong academic and professional background, he is also a researcher at the Centre for Rapid and Sustainable Product Development (CDRsp). His work is dedicated to wood and masonry structures, as well as innovative building processes, making substantial contributions to the field of Civil Engineering.

Publication Profile

Strengths for the Award:

Florindo Gaspar is highly suitable for the Research for Best Researcher Award due to several key strengths:

  • Diverse Research Portfolio: His work spans various areas including sustainable construction materials, rehabilitation of wood and masonry structures, and 3D printing technologies. This demonstrates versatility and relevance to modern civil engineering challenges.
  • Extensive Publication Record: With over 122 works, including journal articles and patents, his research impact is broad, covering material science, sustainable construction, and additive manufacturing. Recent publications in prestigious journals like Construction and Building Materials and Sustainability reinforce his scientific authority.
  • Research Leadership: He has been involved in various large-scale, international projects, such as Forest for the Future and CircularSeas, showcasing his capability to lead and contribute to high-impact research initiatives.
  • Innovative Contributions: His research in developing sustainable materials (e.g., thermal insulation from natural fibers and geopolymer mortars) directly contributes to eco-friendly construction practices, which are critical in today’s environmental context.
  • Active Collaborations and Funding: He has secured significant research funding from national and international agencies, reflecting his ability to attract resources to advance his research.

Areas for Improvement:

  • International Visibility: Although he has been involved in notable European projects, further collaborations or leadership roles in international, cross-disciplinary consortia could enhance his global presence.
  • Outreach and Industry Applications: While his consultancy work and practical projects show applied research, increasing engagement in public dissemination (through workshops, conferences, or industry white papers) would further highlight the societal impact of his work.

 

Education

🎓 Florindo holds a Ph.D. in Civil Engineering (2010) and a MSc in Construction (2006) from the Instituto Superior Técnico at the University of Lisbon. He completed his Graduation in Civil Engineering in 2000 from the University of Coimbra, and earlier obtained a Bachelor’s degree from the Polytechnic Institute of Lisbon in 1996.

Experience

🏗️ Florindo has been a Professor at IPLeiria since 2001, teaching subjects related to wood and masonry structures, building materials, and construction processes. He has also held roles as a Technical Manager at Gasmenfil, Project Designer, and Construction Supervisor in various firms, accumulating a wealth of hands-on industry experience.

Research Focus

🔬 His research focuses on the monitoring, rehabilitation, and conservation of wood and masonry structures, with a keen interest in sustainability and innovative construction techniques. He has supervised multiple MSc projects in these areas, contributing to practical advancements in civil engineering.

Awards and Honours

🏆 Florindo has been involved in numerous research and consultancy projects, securing funding from prestigious organizations like the European Social Fund and Agência Nacional de Inovação SA. His commitment to advancing civil engineering is recognized in the various contracts and projects he’s participated in.

Publication Top Notes

Rheology Assessment of Mortar Materials for Additive Manufacturing – Published in Current Materials Science, 2024. DOI: 10.2174/2666145417666230801093723

Thermal Insulation Materials Based on Eucalyptus Bark Fibres – Published in Construction and Building Materials, 2024. DOI: 10.1016/j.conbuildmat.2024.138559

Optimization of Formulation Ratios of Geopolymer Mortar Based on Metakaolin and Biomass Fly Ash – Published in Construction and Building Materials, 2024. DOI: 10.1016/j.conbuildmat.2023.134846

Recycling Ophthalmic Lens Wastewater in a Circular Economy Context: A Case Study with Microalgae Integration – Published in Materials, 2023. DOI: 10.3390/ma17010075

Comprehensive Design Methodology for 3D Printing Mortars – Published in Construction and Building Materials, 2023. DOI: 10.1016/j.conbuildmat.2023.132804

Conclusion:

Florindo Gaspar’s robust academic and research profile, combined with his contributions to sustainable construction and innovation in civil engineering, makes him a strong contender for the Best Researcher Award. Expanding his global outreach and continuing his innovative work in sustainable materials will only enhance his standing in the research community.

Mohammad Hossein – Structural Engineering – Best Researcher Award

Mohammad Hossein - Structural Engineering - Best Researcher Award

Materials and Energy Research Center - Iran

AUTHOR PROFILE

GOOGLE SCHOLAR

ACADEMIC BACKGROUND

Mohammad Hossein Karami is a distinguished Postdoctoral Researcher at Amirkabir University of Technology (Tehran Polytechnic). He completed his postdoctoral and doctoral degrees with exemplary grades, consistently ranking at the top of his class. His academic achievements reflect his dedication and expertise in his field.

RESEARCH INTERESTS

Mohammad's research interests encompass a wide range of topics including Nanocomposites, Nanoparticles in Drug Delivery Systems, Nanobio Technology, Wound Healing, and Nanomedicine. His work delves into Cure Kinetics and Degradation Kinetics, demonstrating a comprehensive understanding of advanced materials and their applications in medicine.

PUBLICATIONS AND CITATIONS

With more than 224 citations to his name, Mohammad has made significant contributions to his field through his published papers. His research on nanotechnology and related topics has garnered attention and respect within the scientific community, underscoring the impact of his work.

CURRENT RESEARCH ACTIVITIES

Currently, Mohammad serves as a research assistant at Amirkabir University of Technology, the Materials and Energy Research Institute, and the Nanotechnology Center of Azad Islamic University, South Tehran Branch. His roles at these prestigious institutions allow him to advance his research and collaborate with leading experts in his field.

PASSION FOR INNOVATION

Mohammad's dedication to his work is evident in his aspiration to read, write, and invent continuously. His commitment to pushing the boundaries of knowledge and innovation is a testament to his passion for advancing science and technology.

ACHIEVEMENTS AND RECOGNITION

Throughout his career, Mohammad has been recognized for his exceptional research and contributions to nanotechnology. His work has not only advanced scientific understanding but also positioned him as a prominent researcher in his field.

FUTURE ASPIRATIONS

Driven by a relentless pursuit of knowledge, Mohammad aims to continue his research with a focus on developing new technologies and solutions in nanomedicine and related areas. His ambition to innovate and contribute to scientific progress remains a central aspect of his professional journey.

NOTABLE PUBLICATION

Udoye Nduka Ekene -Reinforcement – Best Researcher Award

Dr. Udoye Nduka Ekene -Reinforcement - Best Researcher Award

Covenant University Ota - Nigeria

AUTHOR PROFILE

Scopus

EARLY ACADEMIC PURSUITS:

Dr. Udoye Nduka Ekene commenced his academic journey at Covenant University, Ota, Nigeria, where he currently serves as a Lecturer I in the Mechanical Engineering Department. His residential address is situated at No 4 Ola Avenue off Ige Daramola street, Iyana Iyesi Ota Ogun state.

PROFESSIONAL ENDEAVORS:

Dr. Ekene's professional journey includes notable positions such as Maintenance Engineer at FAB-T Electromechanical Engineering Services and Project Manager at NAUPAN Engineering Company Nig. Ltd. His academic career at Covenant University started as a Lecturer II in 2017, and he has progressed to the position of Lecturer I.

CONTRIBUTIONS AND RESEARCH FOCUS:

Dr. Ekene's research interests lie in the realm of Mechanical Engineering, specifically focusing on the reinforcement of aluminum alloys biomaterials, Mechanical Behavior of Materials, Mechanical Properties, Microstructure, Material Characterization, and Machine design.

IMPACT AND INFLUENCE:

As a lecturer at Covenant University, Dr. Ekene actively contributes to teaching, research, and administrative responsibilities. His specialization and research focus demonstrate a commitment to advancing knowledge in Mechanical Engineering.

ACADEMIC CITES:

Dr. Ekene has made significant contributions to academic literature with publications in international journals, addressing topics such as the performance of cooling tower fan blades, wear resistance of aluminum alloy, and the evaluation of shrinking direction using Monte Carlo simulation.

LEGACY AND FUTURE CONTRIBUTIONS:

Dr. Ekene's recent recognition with the Academic Excellence Award and Best Student Award highlights his outstanding contributions to the academic community. His role as Chair of the Publicity Committee for the International Conference on Engineering for a Sustainable World reflects his commitment to promoting academic discourse.

ADMINISTRATIVE/COMMITTEE MEMBERSHIP:

Dr. Ekene actively participates in administrative roles, including serving as the Chair of the Publicity Committee for the International Conference on Engineering for a Sustainable World and holding positions such as Co-Publicity Secretary and Rapporteur Secretary for previous conferences.

HONORS AND AWARDS:

His academic excellence has been acknowledged with awards such as the Academic Excellence Award from the School of Postgraduate Studies and the Best Student Award for being the best Ph.D student in Mechanical Engineering.

RECENT PROFESSIONAL DEVELOPMENT ACTIVITIES:

Dr. Ekene has engaged in professional development activities, including a workshop on "Towards Excellence in Engineering Training and Professional Practice in Sub-Saharan Africa" and active participation in the Covenant University – OCIIP Nigeria Expo 2020 Webinar.

NOTABLE PUBLICATION