Ameelia Roseline | Materials Science and Engineering | Best Researcher Award

Dr. Ameelia Roseline | Materials Science and Engineering | Best Researcher Award

Continue reading “Ameelia Roseline | Materials Science and Engineering | Best Researcher Award”

João Grilo | Materials Science and Engineering | Best Researcher Award

Dr. João Grilo | Materials Science and Engineering | Best Researcher Award

Researcher at Universidade de Aveiro, Portugal

João Paulo de Freitas Grilo is a dedicated researcher in Materials Science and Engineering, specializing in ceramics and electrochemical materials. He earned his Ph.D. in Materials Science and Engineering from the University of Aveiro in 2019. With a robust academic background, he has actively contributed to the scientific community through extensive research, numerous publications, and collaborative projects. Currently, he serves as a researcher at the University of Aveiro, focusing on ionic conductors, solid oxide cells, and composite materials. His work has significantly impacted the field of engineering and technology, particularly in advancing material properties for energy applications.

Profile

Orcid

Education

João Paulo de Freitas Grilo has an extensive academic background in materials engineering. He completed his Ph.D. in Materials Science and Engineering in 2019 at the University of Aveiro. Prior to this, he earned a Master’s degree in Materials Engineering from the Federal University of Rio Grande do Norte (UFRN) in 2015. His undergraduate studies in Materials Engineering were also conducted at UFRN, where he graduated in 2013. Additionally, he obtained a Bachelor’s degree as an Electrical Technician from the Institute of Federal Education, Science, and Technology of Rio Grande do Norte in 2009. His education provided a strong foundation for his research in materials science and engineering, with a particular focus on ceramics and electrochemical applications.

Experience

João Paulo de Freitas Grilo has accumulated a wealth of experience in both research and academic environments. As a researcher at the University of Aveiro, he has been deeply involved in various scientific investigations and technological advancements. His contributions include co-supervising Ph.D. theses and MSc dissertations, demonstrating his role in mentoring and developing the next generation of scientists. He has participated in multiple research projects, assuming roles as a researcher, Ph.D. fellow, and supervisor. His expertise extends to organizing academic events and collaborating with international teams to advance the understanding of solid-state ionic conductors and mixed conductors.

Research Interests

His primary research interests lie in the field of engineering and technology, specifically in materials engineering. His work focuses on ceramics, solid oxide cells, and grain boundary engineering. He has explored ionic and mixed conductors, emphasizing the development of materials for energy applications, including fuel cells and electrochemical devices. His studies also delve into processing techniques and the impact of microstructures on electrical properties. Through his research, he aims to enhance material performance, efficiency, and durability in energy conversion systems. His investigations are instrumental in developing innovative materials for sustainable energy solutions.

Awards

João Paulo de Freitas Grilo has received recognition for his contributions to materials science and engineering. His work has been acknowledged through awards and nominations in prestigious conferences and research institutions. His dedication to advancing ceramics and electrochemical materials has earned him positions in significant scientific projects, reflecting the impact of his research on the scientific community. His contributions to solid oxide fuel cells and composite electrolytes have been widely recognized, making him a leading figure in his area of expertise.

Publications

João Paulo de Freitas Grilo has authored numerous publications in high-impact journals, contributing significantly to the field of materials science. Some of his key publications include:

Tidei, H. J., Yang, T., & Grilo, J. P. F. (2025). “Role of microstructure on the electrical properties of ceria-based composites.” International Journal of Hydrogen Energy.

Melo, K. P. V., Araújo, A. J. M., Grilo, J. P. F., et al. (2024). “Understanding the oxygen reduction reaction of one-dimensional Ca3Co2O6 cathodes for SOFC.” International Journal of Hydrogen Energy.

Starykevich, M., Rondão, A. I. B., Grilo, J. P. F., & Marques, F. M. B. (2023). “Tuning of phase content, microstructure, and thermal expansion of MgPSZ.” Ceramics International.

Araújo, A. J. M., Loureiro, F. J. A., Grilo, J. P. F., et al. (2022). “A high-performance oxygen electrode for solid oxide cells: Compositional optimization of barium cobaltite-based composites.” Journal of Alloys and Compounds.

Rondão, A. I. B., Grilo, J. P. F., Starykevich, M., & Marques, F. M. B. (2022). “Dilatometric inspection of phase changes in Mg-PSZ.” Thermochimica Acta.

Grilo, J. P. F., Jamale, A., Starykevich, M., et al. (2022). “Role of salts on the electrical performance of ceria-based electrolytes: An overview.” Frontiers in Materials.

Garcia, M. F. L., Araújo, A. J. M., Raimundo, R. A., et al. (2021). “Electrical properties of Ca-doped ceria electrolytes prepared by proteic sol-gel route and by solid-state reaction using mollusk shells.” International Journal of Hydrogen Energy.

Conclusion

João Paulo de Freitas Grilo is a prominent researcher in materials science, specializing in ceramics and electrochemical applications. With a solid academic background, extensive research experience, and numerous high-impact publications, he has significantly contributed to advancements in solid oxide fuel cells and composite electrolytes. His work continues to influence the scientific community, paving the way for innovative materials in energy conversion and storage applications. His dedication and expertise make him a valuable asset in the field of materials engineering.

Benjamin Teo | Materials Science and Engineering | Best Researcher Award

Dr. Benjamin Teo | Materials Science and Engineering | Best Researcher Award

UKRI Postdoctoral Fellow at Imperial College London, United Kingdom

Dr. Benjamin H. W. Teo is an accomplished researcher in the fields of adsorption science and engineering, metal-organic frameworks, renewable energy technology, additive manufacturing, polymer crystallization, and photovoltaic-thermal systems. With a strong academic background and extensive research experience, he has contributed significantly to the advancement of sustainable energy solutions and materials engineering. Currently serving as a UKRI Postdoctoral Fellow at Imperial College London, Dr. Teo continues to push the boundaries of scientific discovery and innovation in his field.

profile

orcid

Education

Dr. Teo obtained his Ph.D. in Mechanical Engineering from Nanyang Technological University (NTU), Singapore, where he focused on the modulation and green synthesis of metal-organic frameworks (MOFs) for enhanced water uptake and adsorption kinetics in cooling applications. Prior to this, he earned a Bachelor of Engineering in Mechanical Engineering from NTU with First Class Honours. He also holds a Diploma with Merit in Mechatronics from Temasek Polytechnic, Singapore. His educational journey includes participation in a student exchange program at San Diego State University, USA.

Experience

Dr. Teo’s professional journey has been marked by impactful roles in both academia and industry collaborations. Currently, as a UKRI Postdoctoral Fellow at Imperial College London, he is investigating the performance of solar cells integrated with sustainable technologies. He previously worked at NTU’s HP-NTU Digital Manufacturing Corporate Lab as a Research Fellow, where he studied polymer crystallization behavior in additive manufacturing processes. His earlier roles include working as a Project Officer in NTU’s School of Mechanical and Aerospace Engineering, focusing on MOFs for water adsorption and energy applications.

Research Interest

Dr. Teo’s research interests encompass a broad range of interdisciplinary fields, including adsorption science, metal-organic frameworks, renewable energy technology, additive manufacturing, polymer crystallization, and photovoltaic-thermal systems. His work aims to enhance material properties for applications in energy efficiency and sustainability, bridging the gap between theoretical simulations and practical implementations.

Awards

Dr. Teo has received numerous accolades for his contributions to research and academia. Notable awards include the Seal of Excellence from the MSCA Fellowship Call 2020 by the European Commission, an Honorable Mention at the Virtual Poster Workshop (HP-NTU Corporate Lab), and the Best Paper Award at the 4th International Symposium on Innovative Materials for Processes in Energy Systems. Additionally, he was recognized with the Best Teaching Assistant Award at NTU and was featured on the Dean’s List and Director’s List during his academic tenure.

Selected Publications

Teo, H. W. B., Ng, M. S., Xenon storage density and its energy flow through adsorption on metal-organic frameworks, Journal of Industrial and Engineering Chemistry, 2024. (Citation: 2, Impact Factor: 6.1)

Le, K. Q., Tran, V. T., Chen, K., Teo, H. W. B., Predicting crystallinity of polyamide 12 in multi-jet fusion process, Journal of Manufacturing Processes, 2023. (Citation: 2, Impact Factor: 5.684)

Teo, H. W. B., Chen, K., Tran, V. T., Non-isothermal crystallization behavior of polyamide 12 analogous to multi-jet fusion additive manufacturing, Polymer, 2021. (Citation: 14, Impact Factor: 4.43)

Teo, H. W. B., Chakraborty, A., Aluminium fumarate MOF for water adsorption: Cooling/heat pump applications, Microporous and Mesoporous Materials, 2018. (Citation: 59, Impact Factor: 5.455)

Teo, H. W. B., Chakraborty, A., Experimental study of isotherms and kinetics for adsorption of water on Aluminium Fumarate, International Journal of Heat and Mass Transfer, 2017. (Citation: 107, Impact Factor: 5.584)

Teo, H. W. B., Chakraborty, A., Water adsorption on CHA and AFI Types Zeolites, Applied Thermal Engineering, 2017. (Citation: 60, Impact Factor: 5.295)

Teo, H. W. B., Chakraborty, A., Improved adsorption characteristics data for AQSOA types zeolites and water systems, Microporous and Mesoporous Materials, 2017. (Citation: 133, Impact Factor: 5.455)

Conclusion

Given his extensive research contributions, innovation, mentorship, and global recognition, Dr. Benjamin H. W. Teo is a highly suitable candidate for the “Best Researcher Award.” His work continues to push boundaries in material science and sustainable energy applications, making a lasting impact on both academia and industry.

Sergio Gonzalez Sanchez | Metallurgy/Structural | Best Scholar Award

Dr. Sergio Gonzalez Sanchez | Metallurgy/Structural | Best Scholar Award

Senior Professor at University Carlos III of Madrid, Spain

Dr. Sergio González Sánchez is a distinguished researcher and professor specializing in materials science and engineering. With extensive experience in academia and industry, his expertise encompasses metallic alloys, biomaterials, and additive manufacturing. Over the years, he has contributed to the advancement of materials for biomedical, structural, and industrial applications through pioneering research and international collaborations.

profile

scopus

Education

Dr. González earned his Ph.D. in Materials Physics from Complutense University of Madrid in 2008, conducting research at the National Center for Metallurgical Research. He holds degrees in Materials Engineering from the Polytechnic University of Madrid and Mechanical Engineering from the Pontifical Comillas University of Madrid. His academic journey includes research fellowships and postdoctoral positions in prestigious institutions across Spain, the UK, Japan, and Germany.

Experience

With over two decades in research and academia, Dr. González has held positions as a Senior Lecturer at Northumbria University, a postdoctoral researcher at the University of Manchester, and a Juan de la Cierva Fellow at the Autonomous University of Barcelona. His international engagements include research visits to Helmholtz-Zentrum Hereon (Germany), Diamond Light Source (UK), and the University of Science and Technology Beijing (China). In 2024, he was appointed as a Distinguished Researcher and Senior Professor at Carlos III University of Madrid.

Research Interests

Dr. González’s research focuses on the development and characterization of advanced metallic alloys, high-entropy materials, and nanostructured coatings. He has contributed significantly to the fields of additive manufacturing, mechanical behavior of biomaterials, and corrosion-resistant metal composites. His work aims to enhance the performance of materials in extreme environments, with applications in aerospace, biomedical implants, and sustainable engineering.

Awards

Dr. González has received several accolades, including the Beatriz Galindo Distinguished Senior Fellowship (2024-2028) from the Spanish Ministry of Science, the Best Researcher Award (2024) at the International Young Scientist Awards, and finalist recognition at the British Engineering Excellence Awards (2017). He is also a Fellow of the Institute of Materials, Minerals, and Mining (IOM3) and a Chartered Engineer.

Selected Publications

S. González et al. (2025). “Cooling rate control and refractory element addition to enhance mechanical properties of CoCrFeMnNi alloy.” Journal of Materials Research and Technology, 36, 459-469.

S. González et al. (2024). “Glass formation and mechanical behavior of ZrHfTiCuNiCoAl multicomponent systems.” Materials Science and Engineering A (submitted).

L.J. García-Hernández et al. (2024). “Strengthening mechanisms in Al-Cu and Al-Cu-Mg systems subjected to plastic deformation.” Canadian Metallurgical Quarterly, 1-10.

A. Martinez-Garcia et al. (2024). “Effect of Co content on electrochemical hydrogen kinetics properties of BCC-type MgAlTiCoxNi high-entropy alloys.” Electrochimica Acta, 497, 144601.

S. Mehvari et al. (2023). “Effect of processing methods on the electrical conductivity of silver-polyurethane composite films.” Journal of Composite Materials, 57, 4409-4422.

S. González et al. (2023). “Strain rate sensitivity of CoCrFeMnNiTix high-entropy alloys using shear punch test.” Materials and Design, 233, 112294.

V.M. Villapún et al. (2020). “Development of antibacterial steel surfaces through laser texturing.” APL Materials, 8, 091108.

Conclusion

Dr. Sergio González Sánchez embodies the qualities of an outstanding scholar—exceptional research output, global recognition, academic leadership, and impactful contributions to material science and engineering. His credentials make him an ideal recipient for a Research for Best Scholar Award.

Xuemei Wei | Materials Science and Engineering | Best Paper Award

Dr Xuemei Wei | Materials Science and Engineering | Best Paper Award


Assistant Researcher, Shaoxing University, China

Dr. Xuemei Wei is an accomplished researcher specializing in metal-organic chemistry and catalysis. She holds a Ph.D. in Physical Chemistry from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. Her expertise lies in the development of nano-catalytic materials for environmental and energy applications. With over 12 SCI publications in high-impact journals, she has made significant contributions to catalyst design and chemical transformations. Currently, she serves as an Assistant Researcher at Shaoxing University, where she advances research in pharmaceutical and chemical sciences. Her work integrates innovative nanomaterials to address environmental challenges and sustainable energy solutions.

PROFESSIONAL PROFILE

Scopus

EDUCATION

🎓 Ph.D. in Physical Chemistry – Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (2018-2021)
📝 Thesis: Design and Mechanism of Efficient Carbonylation Catalysts under Ambient Conditions.
🎓 M.Sc. in Inorganic Chemistry – Inner Mongolia University (2013-2016)
🎓 B.Sc. in Chemistry – Jilin Normal University (2009-2013)

PROFESSIONAL EXPERIENCE

🔬 Assistant Researcher – Shaoxing University, College of Chemistry and Chemical Engineering (2021-Present)
🔍 Focus: Development of nano-catalytic materials for industrial and environmental applications.
🧪 R&D Specialist – Changchun Zhongke Haorong New Materials Research Co., Ltd. (2016-2018)
🚀 Developed and optimized catalytic materials for large-scale industrial use.

AWARDS & HONORS

🏆 Recognized for research contributions in metal-organic chemistry.
📜 Multiple SCI-indexed publications in top-tier journals.
🌍 Acknowledged for innovative approaches in environmental catalysis.

RESEARCH FOCUS

🧪 Catalysis Under Ambient Conditions: Development of carbonylation catalysts for industrial applications.
🌱 Environmental Nanomaterials: Engineering nanomaterials for pollutant degradation and remediation.
Sustainable Energy Catalysis: Exploring hydrodeoxygenation reactions for green chemistry solutions.

PUBLICATION TOP NOTES

📄 Turning on Ambient Conditions Hydrodeoxygenation of Biobased Aromatic Alcohols – Energy Conversion and Management (2025)
📄 Construction of MXene-loaded Nanoscale Zero-Valent Iron for ReO4-/TcO4- Sequestration – Separation and Purification Technology (2024)
📄 Deciphering the Facet-Dependent Scavenging Potential of α-Fe2O3 Nanocrystals – Applied Surface Science (2024)
📄 Crucial Size Effect on Dicarbonylation of Acetylene Over Pd/CsHPMo Catalysts – Dalton Transactions (2024)
📄 Targeting Phosphodiesterase 4 as a Therapeutic Strategy for Cognitive Improvement – Bioorganic Chemistry (2023)
📄 Vesicular BiVO4 Nanostructures Modified by g-C3N4 Quantum Dots – Materials Science in Semiconductor Processing (2024)
📄 Synergistic Effect of Hematite Facet and Pd Nanocluster for Acetylene Dicarbonylation – Molecular Catalysis (2021)
📄 Strong Metal-Support Interactions Between Palladium Nanoclusters and Hematite – New Journal of Chemistry (2020)
📄 Highly Efficient Selective Dicarbonylation of Acetylene Catalyzed by Palladium Nanosheets – New Journal of Chemistry (2020)
📄 Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous – Progress in Chemistry (2020)
📄 Advances in Research on Structure-Activity Relationship in Hydrogenation Catalysts – Chemical Industry and Engineering Progress (2020)
📄 Support Morphology-Dependent Catalytic Activity of Co/CeO2 for Phenol Hydrogenation – New Journal of Chemistry (2020)

CONCLUSION

Dr. Xuemei Wei is a leading researcher in catalysis and nanomaterials, making significant strides in environmental and sustainable chemistry. Her contributions to metal-organic chemistry and catalytic performance have earned her recognition in top scientific journals. As an Assistant Researcher at Shaoxing University, she continues to develop innovative solutions for industrial and environmental challenges. 🚀🔬

Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assist. Prof. Dr Hang Xu | Mechanical Metamaterials | Best Researcher Award

Assistant Professor, Concordia University, Canada

Dr. Hang Xu is an Assistant Professor in the Department of Mechanical, Industrial, and Aerospace Engineering at Concordia University, Montreal, Canada. With a Ph.D. in Mechanical Engineering from McGill University and an MSc in Aircraft Design from Beijing University of Aeronautics and Astronautics, Dr. Xu specializes in mechanical metamaterials, smart structures, and additive manufacturing. His research focuses on developing advanced materials with programmable morphing and motion for aerospace, medical, and robotic applications. Prior to joining Concordia, he held research positions at Imperial College London and Siemens, contributing to innovations in multi-stable structures, soft robotics, and medical devices. Dr. Xu is recognized for his teaching excellence and has received awards for his contributions to research during the COVID-19 pandemic.

Professional Profile

Orcid

Scopus

Education 🎓

  • Doctorate in Mechanical Engineering, McGill University (2013–2018)
    Supervisor: Damiano Pasini
  • Master’s Thesis in Aircraft Design, Beijing University of Aeronautics and Astronautics (2011–2013)
    Supervisor: Yuanming Xu
  • Bachelor’s in Aircraft Design and Engineering, Shenyang Aerospace University (2007–2011)
    Supervisor: Weiping Zhang

Experience 💼

  • Assistant Professor, Concordia University (2022–Present)
    Research on functional/smart metamaterials for aerospace, nautical, and medical applications.
  • Research Associate, Imperial College London (2020–2022)
    Developed multi-stable structures, soft robots, and medical devices.
  • Postdoctoral Researcher, McGill University (2018–2020)
    Worked on thermally actuated deployable mechanisms and additive manufacturing processes.
  • Internships: Chinese Aircraft Design Institute of Aviation Medicine (2012–2013) and Shenyang Aircraft Design Institute (2010–2011).

Awards and Honors 🏆

  • Teaching Excellence Award, Concordia University (2023)
  • Associate Fellowship of the Higher Education Academy (AFHEA), UK (2022)
  • Excellent Contribution to Research in COVID-19 Pandemic, Imperial College London (2021)
  • Winner of 3D-Printing Workshop Design Challenge, McGill University (2019)

Research Focus 🔬

Dr. Xu’s research focuses on mechanical metamaterialssmart materials and structures, and additive manufacturing. His work aims to develop materials with programmable morphing and motion for applications in aerospace structuressoft roboticsmedical devices, and composite materials. Key areas include multiscale mechanics, finite element analysis, and the design of multi-stable structures for innovative functionalities.

Publication Top Notes 📚

  1. Embedded pressure sensing metamaterials using TPU-graphene composites and additive manufacturing
  2. Generalized tessellations of superellipitcal voids in low porosity architected materials for stress mitigation
  3. Thermally actuated hierarchical lattices with large linear and rotational expansion
  4. Routes to program thermal expansion in three-dimensional lattice metamaterials built from tetrahedral building blocks
  5. ABAQUS user subroutine UMAT for elastoplastic nonlinear kinematic hardening material (Mróz model) with anisotropic plasticity
  6. Digitally Programmable Architected Materials with Static and Dynamic Reconfiguration
  7. Multi-stable meta-materials with programmable reconfigurations for soft robots
  8. 3D printed soft metamaterial force sensors for gait monitoring using TPU-graphene composites
  9. Overcoming the strength-modulus tradeoff using double network metamaterial lattices
  10. Multi-stable architectured materials with high-mobility morphing

Conclusion 🌟

Dr. Hang Xu is a leading researcher in mechanical metamaterials and smart structures, with a strong focus on innovative applications in aerospace, robotics, and medical devices. His contributions to teaching, research, and industry collaborations highlight his commitment to advancing materials science and engineering. Through his work, Dr. Xu continues to push the boundaries of programmable materials, paving the way for future technological advancements. 🚀

 

Dure Najaf Iqbal – Materials Science and Engineering – Best Researcher Award

Dure Najaf Iqbal - Materials Science and Engineering - Best Researcher Award

University of Lahore - Pakistan

AUTHOR PROFILE

SCOPUS

🔬 EXPERTISE IN ORGANIC AND POLYMER CHEMISTRY

Dr. Dure Najaf Iqbal is an accomplished Associate Professor in the Department of Chemistry at The University of Lahore. With a PhD in Chemistry specializing in Organic and Polymer Chemistry from Lahore College for Women University, his research focuses on microwave-assisted synthesis, polymer chemistry, hydrogels, and synthetic organic techniques. His work in these fields is marked by advanced research skills and a strong command of analytical techniques.

🎓 ACADEMIC ACHIEVEMENTS AND EDUCATION

Dr. Iqbal's academic background reflects his dedication to chemistry. He earned his Bachelor’s and Master’s degrees from the University of the Punjab, Lahore, with a focus on Organic Chemistry. His doctoral research, supervised by Dr. Erum Akbar Hussain, involved the synthesis and characterization of autochthonic guar gum derivatives. His education has been supplemented by extensive training in analytical techniques, computer literacy, and literature review methodologies.

👩‍🏫 TEACHING EXPERIENCE AND IMPACT

With a rich teaching history, Dr. Iqbal has contributed significantly to the education sector. He served as an Assistant Professor at the University of the Punjab, where he successfully managed M.Phil. research projects. His earlier roles include teaching FSc. classes at Punjab Group of Colleges and Chemistry at the Beaconhouse School System, where he was involved in curriculum development and science exhibitions.

🏭 INDUSTRIAL EXPERIENCE IN CHEMICALS

Before transitioning to academia, Dr. Iqbal gained valuable industrial experience as a Lab Manager at MB Dyes Chemical and Silk Industry. This role provided him with practical insights into the chemical industry, enriching his understanding of applied chemistry and enhancing his research capabilities.

📜 SIGNIFICANT THESIS AND RESEARCH

Dr. Iqbal’s PhD thesis, “Synthesis and Characterization of Autochthonic Guar Gum Derivatives,” stands out for its innovative approach to polymer chemistry. His MSc. thesis on steroid extraction from medicinal plants also highlights his expertise in organic synthesis and characterization. His research has been presented at various international and national conferences, reflecting his active engagement in the scientific community.

🌐 CONFERENCE PARTICIPATION AND ORGANIZATION

Dr. Iqbal has been actively involved in numerous conferences and seminars, both as a participant and organizer. His contributions to events such as the International Conference on Materials Science and Nano Technology and the Conference on Recent Advances in Chemistry demonstrate his commitment to advancing the field of chemistry and fostering academic collaboration.

🛠️ COMPUTER LITERACY AND RESEARCH SKILLS

Proficient in essential software like Excel, MS-Word, Chem Window, and Chem Draw, Dr. Iqbal employs these tools to enhance his research and teaching activities. His ability to conduct thorough literature reviews and apply advanced statistical techniques underscores his strong analytical and research skills, which are critical for his work in polymer and organic chemistry.

NOTABLE PUBLICATION

Assessment of carcinogenic and non-carcinogenic risk of exposure to potentially toxic elements in tea infusions: Determination by ICP-OES and multivariate statistical data analysis
Authors: Ahmed, M., Ahmad, M., Khan, M.A., Wani, T.A., Zargar, S.
Year: 2024
Journal: Journal of Trace Elements in Medicine and Biology

Development and characterization of a biodegradable film based on guar gum-gelatin@sodium alginate for a sustainable environment
Authors: Shah Bukhary, S.K.H., Choudhary, F.K., Iqbal, D.N., Ali, I., Ahmed, M.
Year: 2024
Journal: RSC Advances

Efficient drug delivery potential and antimicrobial activity of biocompatible hydrogels of dextrin/Na-alginate/PVA
Authors: Nazir, A., Abbas, M., Kainat, F., Alshawwa, S.Z., Iqbal, M.
Year: 2024
Journal: Heliyon

Advances in chitosan-based drug delivery systems: A comprehensive review for therapeutic applications
Authors: Haider, A., Khan, S., Iqbal, D.N., Kanwal, Q., Mustafa, G.
Year: 2024
Journal: European Polymer Journal

Fabrication of CMC/PVA/Dextrin-Based Polymeric Membrane for Controlled Release of Cefixime With Enhanced Antibacterial Activity
Authors: Nazir, A., Abbas, M., Iqbal, D.N., Ahmad, N., Iqbal, M.
Year: 2024
Journal: Dose-Response

Nanocellulose/wood ash-reinforced starch-chitosan hydrogel composites for soil conditioning and their impact on pea plant growth
Authors: Iqbal, D.N., Tariq, Z., Philips, B., Ali, I., Ahmed, M.
Year: 2024
Journal: RSC Advances

Yao Liu – Materials Physics and Chemistry – Best Researcher Award

Yao Liu - Materials Physics and Chemistry - Best Researcher Award

Central South University - China

AUTHOR PROFILE

SCOPUS

EXPERT IN THERMAL DAMAGE CONTROL AND HEAT TRANSFER

Yao Liu is a distinguished researcher in the field of Mining Engineering, focusing on thermal damage control in deep wells and geothermal exploitation in mines. His work involves studying the heat transfer characteristics of multi-field coupling and the microstructure and basic physical properties of porous materials, which are crucial for the stability and efficiency of geothermal systems.

PH.D. CANDIDATE AT CENTRAL SOUTH UNIVERSITY

Currently pursuing his Ph.D. at Central South University under the supervision of Prof. Hongwei Deng, Yao is dedicated to advancing the understanding of thermal and mechanical properties of materials in mining engineering. His doctoral research continues to build on his extensive background in the field.

EDUCATIONAL BACKGROUND IN MINING ENGINEERING

Yao holds a Master's degree from Central South University, where his thesis focused on the mechanical properties of granular materials and slope stability in cold regions. He also earned his Bachelor's degree from Jiangxi University of Science and Technology, where he designed a mining plan for the Baoshan lead-zinc mine.

LEADER IN RESEARCH PROJECTS

As the director of a research project on the mechanical characteristics of granular mass in cold region waste dumps, Yao has demonstrated his capability to lead significant research initiatives. He has also participated in a national project studying the disaster mechanisms in cold region dumps, funded by the National Natural Science Foundation of China.

AWARDED ACADEMIC SCHOLARSHIPS

Yao has been recognized for his academic excellence with multiple first-class academic scholarships from Central South University. His consistent performance and dedication have also earned him an enterprise scholarship, highlighting his commitment to academic and research excellence.

PROLIFIC RESEARCHER AND AUTHOR

Yao has contributed to several high-impact publications, including studies on the influence of aggregate sizes on pore structures and mechanical characteristics of cement mortar, and the multi-factor analysis of aggregate grading on pore structure characteristics. His work is published in renowned journals such as Construction and Building Materials and the Journal of Building Engineering.

SPECIALIST IN PORE STRUCTURE ANALYSIS

His research on the pore structure characteristics of materials, particularly under different freeze-thaw cycles, and the development of strength prediction models based on fractal theory, showcases his expertise in understanding and optimizing the microstructural properties of construction materials.

NOTABLE PUBLICATION

Properties of Cement Thermal Insulation Materials Containing Tailing Waste for Connecting Mines Assessed Using the Orthogonal Method with the Response Surface Method.
Authors: H. Deng, C. Ran, Y. Liu
Year: 2023
Journal: Processes, 11(9), 2652

Study on Permeability Performance of Cemented Tailings Backfill Based on Fractal Characteristics of Pore Structure.
Authors: Y. Liu, H. Deng
Year: 2023
Journal: Construction and Building Materials, 365, 130035

Association Study on the Pore Structure and Mechanical Characteristics of Coarse-Grained Soil under Freeze–Thaw Cycles.
Authors: Y. Liu, H. Deng, J. Xu, G. Tian, J. Deng
Year: 2022
Journal: Minerals, 12(3), 314

Research on Strength Prediction Model and Microscopic Analysis of Mechanical Characteristics of Cemented Tailings Backfill under Fractal Theory.
Authors: H. Deng, T. Duan, G. Tian, Y. Liu, W. Zhang
Year: 2021
Journal: Minerals, 11(8), 886

Study on the Strength Evolution Characteristics of Cemented Tailings Backfill from the Perspective of Porosity.
Authors: H. Deng, Y. Liu, W. Zhang, S. Yu, G. Tian
Year: 2021
Journal: Minerals, 11(1), pp. 1–14, 82

Mohammad Hossein – Structural Engineering – Best Researcher Award

Mohammad Hossein - Structural Engineering - Best Researcher Award

Materials and Energy Research Center - Iran

AUTHOR PROFILE

GOOGLE SCHOLAR

ACADEMIC BACKGROUND

Mohammad Hossein Karami is a distinguished Postdoctoral Researcher at Amirkabir University of Technology (Tehran Polytechnic). He completed his postdoctoral and doctoral degrees with exemplary grades, consistently ranking at the top of his class. His academic achievements reflect his dedication and expertise in his field.

RESEARCH INTERESTS

Mohammad's research interests encompass a wide range of topics including Nanocomposites, Nanoparticles in Drug Delivery Systems, Nanobio Technology, Wound Healing, and Nanomedicine. His work delves into Cure Kinetics and Degradation Kinetics, demonstrating a comprehensive understanding of advanced materials and their applications in medicine.

PUBLICATIONS AND CITATIONS

With more than 224 citations to his name, Mohammad has made significant contributions to his field through his published papers. His research on nanotechnology and related topics has garnered attention and respect within the scientific community, underscoring the impact of his work.

CURRENT RESEARCH ACTIVITIES

Currently, Mohammad serves as a research assistant at Amirkabir University of Technology, the Materials and Energy Research Institute, and the Nanotechnology Center of Azad Islamic University, South Tehran Branch. His roles at these prestigious institutions allow him to advance his research and collaborate with leading experts in his field.

PASSION FOR INNOVATION

Mohammad's dedication to his work is evident in his aspiration to read, write, and invent continuously. His commitment to pushing the boundaries of knowledge and innovation is a testament to his passion for advancing science and technology.

ACHIEVEMENTS AND RECOGNITION

Throughout his career, Mohammad has been recognized for his exceptional research and contributions to nanotechnology. His work has not only advanced scientific understanding but also positioned him as a prominent researcher in his field.

FUTURE ASPIRATIONS

Driven by a relentless pursuit of knowledge, Mohammad aims to continue his research with a focus on developing new technologies and solutions in nanomedicine and related areas. His ambition to innovate and contribute to scientific progress remains a central aspect of his professional journey.

NOTABLE PUBLICATION

Mohammed Mahmoud M. Attia – Materials Science and Engineering – Excellence in Innovation

Mohammed Mahmoud M. Attia - Materials Science and Engineering - Excellence in Innovation

Suez university - Egypt

AUTHOR PROFILE

GOOGLE SCHOLAR

Based on the provided information about Mohammed Mahmoud M. Attia, he appears to be a suitable candidate for the Research for Community Impact Award. His extensive academic and professional background, combined with his contributions to sustainable construction and innovative materials, aligns well with the award's criteria.

EDUCATION

Mohammed Mahmoud M. Attia earned his Ph.D. in Civil Construction from Suez University, Egypt, in October 2018. His thesis, titled "Behavior of Post-Tension Prestressed Lightweight Fiber Reinforced Concrete Beams," was supervised by Prof. Dr. Aymen Hussien Hosny Khalil. He also holds a Master’s degree from the same institution, granted in September 2013, with a thesis on producing lightweight self-cured concrete using local materials. His Bachelor’s degree in Civil Construction was obtained from Suez Canal University in May 2007.

TEACHING EXPERIENCE

Dr. Attia has extensive teaching experience, having taught various courses at different academic levels. These include Technical Reports (Arabic and English), Technical Drawing, Properties and Strength of Materials, Theory of Structures, Architectural Drawing, Surveying, Building Technology, Reinforced Concrete Design, and several others. His teaching spans from first-year undergraduate courses to advanced topics in civil engineering.

PROFESSIONAL EXPERIENCE

Dr. Attia currently serves as an Assistant Professor in the Civil Construction Department at Suez University, a position he has held since June 2021. Prior to this, he was a lecturer and assistant lecturer in the same department. He has also been actively involved in consultancy projects for Suez University and has significant experience in quality control and accreditation processes for educational programs and laboratories.

RESEARCH SUPERVISION

Dr. Attia has supervised multiple M.Sc. and Ph.D. researchers on topics such as textile composite materials as alternatives to rebar, eco-friendly concrete nanomaterials for radiation shielding, and the flexural behavior of RC beams strengthened with hybrid steel-FRP bars. These research projects indicate his commitment to advancing knowledge in sustainable and innovative construction materials.

SOFTWARE PROFICIENCY

Dr. Attia is proficient in various software programs essential for civil engineering and structural analysis, including Ansys, SAP 2000, AutoCAD, MATLAB, CSI ETABS, CSI SAFE, Revit Structure, and Microsoft Word.

PROFESSIONAL SERVICE AND LEADERSHIP

Dr. Attia has held several key positions and participated in numerous workshops and tutorials related to his field. He has been a reviewer for prestigious journals such as the American Journal of Construction and Building Materials, Springer Nature Journal, and Advances in Concrete Construction. He has also coordinated multiple accreditation and quality assurance programs, as well as seminars on sustainable development and green energy.

MEDIA ENGAGEMENT AND OUTREACH

Dr. Attia has actively engaged with the media to discuss important topics such as climate change, technological education, and artificial intelligence. His appearances on Egyptian TV channels highlight his ability to communicate complex scientific ideas to a broader audience, thereby increasing public awareness and understanding.

PUBLICATIONS

Dr. Attia has contributed to the field of civil engineering through various publications. His research on sustainable materials, such as the use of sugarcane bagasse ash and nano eggshell powder in high-strength concrete, and the development of eco-friendly radiation shielding composites using metal-nail waste and steel slag aggregate, demonstrates his focus on innovative and environmentally friendly construction solutions.

CONCLUSION

Dr. Mohammed Mahmoud M. Attia’s extensive academic background, teaching experience, professional service, and research contributions make him a highly suitable candidate for the Research for Community Impact Award. His work in sustainable construction and innovative materials has a significant positive impact on the community, aligning perfectly with the objectives of this award.

NOTABLE PUBLICATION

Effects of sugarcane bagasse ash and nano eggshell powder on high-strength concrete properties 2022 (50)

Metal-nails waste and steel slag aggregate as alternative and eco-friendly radiation shielding composites 2022 (27)

Behavior of FRP rods under uniaxial tensile strength with multiple materials as an alternative to steel rebar 2022 (19)

Performance of RC beams with novelty GFRP under the bending load: An experimental and FE study 2023 (2)

Tests and finite element modeling of concrete beams reinforced with reused steel bars 2024