Peng Gai-Fei | Structural materials | Best Researcher Award

Peng Gai-Fei | Structural materials | Best Researcher Award

Professor at Beijing Jiaotong University

Peng Gai-Fei is an accomplished scholar specializing in high-performance and high-strength concrete, with extensive expertise in fire resistance, frost durability, and concrete recycling. Over decades of academic and professional service, contributions have spanned teaching, research, and industry collaborations. Engagement in numerous committees of prestigious societies reflects leadership in the field. Research has consistently addressed both theoretical and practical aspects of concrete performance, from understanding damage mechanisms to proposing innovative engineering solutions. The body of work has influenced international practices, particularly in structural safety, durability, and sustainable materials use within the civil engineering domain.

Professional Profile

Scopus

Education

Peng Gai-Fei completed formal academic training in Building & Construction Materials, Materials Science, and Civil Engineering from leading institutions in China and Hong Kong. This solid educational background provided a foundation for groundbreaking research in advanced concrete technologies. Each academic phase built on the previous, integrating knowledge of materials at both fundamental and applied levels. Such multidisciplinary expertise has facilitated unique insights into structural materials’ behavior under extreme conditions. The academic journey has been marked by a consistent drive toward solving engineering challenges, which has shaped a distinguished career in research and teaching in civil engineering.

Professional Experience

Peng Gai-Fei has held significant academic and engineering positions, including roles at Tsinghua University, The Hong Kong Polytechnic University, Northern Jiaotong University, and Beijing Jiaotong University. Professional development began as an Assistant Engineer, progressed through lecturer and associate professor positions, and culminated in the current role as a Professor. This progression demonstrates a commitment to both academic growth and the practical application of engineering knowledge. International collaborations and examination of doctoral research reflect a recognition of expertise on a global scale. Contributions span curriculum development, research supervision, and professional training, solidifying an influential presence in engineering education and innovation.

Research Interest

Peng Gai-Fei’s research focuses on the high-temperature properties of high-strength and high-performance concrete, particularly in identifying fire damage mechanisms and developing fire resistance strategies. Additional interests include designing frost-resistant concrete for challenging environments, enhancing shotcrete for tunneling, and understanding crack growth in various concrete types. Work also extends to recycling concrete to promote sustainability, and investigating workability to improve construction efficiency. These research themes bridge fundamental science and applied engineering, resulting in technical measures and materials innovations that advance the field. The approach combines laboratory experimentation, field applications, and theoretical modeling to deliver impactful engineering solutions.

Award And Honor

Recognition for Peng Gai-Fei’s work is reflected through leadership roles in national and international engineering societies. Fellowships, committee memberships, and editorial positions highlight sustained contributions to the advancement of concrete technology. Participation in drafting influential Chinese construction standards demonstrates the trust placed in technical judgment and expertise. Invitations to evaluate doctoral theses at renowned universities further confirm a respected position within the academic community. Membership in global organizations such as the American Concrete Institute and The Concrete Society (UK) underscores an international reputation. These honors signify a career built on excellence, innovation, and commitment to advancing civil engineering practices.

Research Skill

Peng Gai-Fei possesses a diverse range of research skills, including experimental design, advanced materials characterization, and field performance assessment of concrete structures. Expertise includes simulating high-temperature and frost conditions, analyzing microstructural changes, and evaluating mechanical properties post-exposure. Competence in applying rheological models to assess workability enhances practical construction outcomes. The ability to link material science principles with large-scale engineering applications has resulted in optimized material formulations and construction methods. Familiarity with both traditional and modern testing techniques allows for a holistic approach to problem-solving. These skills have underpinned numerous impactful studies that have informed engineering standards and construction practices globally.

Publications

Peng Gai-Fei has authored an extensive portfolio of publications in internationally recognized journals and conference proceedings. Research topics include fire resistance of reactive powder concrete, durability of ultra-high performance concrete, and the influence of thermal shock on fiber-reinforced concrete. Other notable works explore ecological approaches to concrete technology, frost resistance enhancements, and recycled material applications. Contributions often combine rigorous experimentation with practical engineering implications, ensuring relevance to industry stakeholders. Many publications have become reference materials for both researchers and practitioners. The diversity and depth of published work reflect a career dedicated to advancing concrete science and engineering through systematic, evidence-based research.

Title: Effect of calcined red mud on the mechanical properties and microstructure of ultra-high performance concrete
Journal: Construction and Building Materials, 2025

Title: Effects of multi-scale hybrid fibre reinforcement on the mechanical properties of ultra-high-performance concrete
Journal: Magazine of Concrete Research, 2025

Title: Novel cementless ultra-high performance concrete using calcium carbide residue as activator by the aid of combined curing
Journal: Materials and Structures (Matériaux et Constructions), 2025

Title: Coating steel fiber for both CO₂ capturing and strengthening of ultra-high performance concrete
Journal: Journal of Cleaner Production, 2024

Conclusion

Peng Gai-Fei’s career exemplifies the integration of academic excellence, innovative research, and professional leadership in civil engineering. A lifelong dedication to improving the performance, durability, and sustainability of concrete has yielded contributions that influence both national standards and international practices. Extensive publication, mentorship, and committee service demonstrate a commitment to knowledge dissemination and community engagement. The body of work not only advances technical understanding but also addresses pressing engineering challenges. By bridging fundamental research with real-world applications, the career serves as a model of how engineering science can drive practical, impactful solutions for the built environment.

Tanbo Pan | Structural Reinforcement | Best Researcher Award

Prof Tanbo Pan | Structural Reinforcement | Best Researcher Award

Professor, East China Jiaotong University, China

Tanbo Pan is a dedicated scholar and educator in Civil Engineering, specializing in sustainable concrete materials, structural durability optimization, and intelligent monitoring systems. He earned his Ph.D. in Civil Engineering from Tongji University and his Bachelor’s degree from China University of Mining and Technology. Currently, he is a faculty member at East China Jiaotong University, where he lectures on Transportation, Bridge Engineering, and Railway Bridge Engineering. With multiple peer-reviewed publications, his research primarily focuses on reinforced concrete structures, corrosion damage assessment, and acoustic emission techniques. His studies have been published in top-tier journals, highlighting advancements in composite structures and structural health monitoring. His work has received substantial citations, reflecting his impact on the field. Through his academic contributions, Pan continues to influence the development of durable, resilient, and intelligent infrastructure solutions for modern engineering challenges.

PROFESSIONAL PROFILE

Scopus

EDUCATION 🎓

📍 Ph.D. in Civil Engineering (2014–2024) – Tongji University
📍 B.E. in Civil Engineering (2014–2018) – China University of Mining and Technology

During his academic tenure, Pan focused on advanced structural durability and sustainable materials. His doctoral research revolved around the coupled effects of corrosion and sustained loading on reinforced concrete structures, incorporating composite reinforcement systems. Throughout his studies, he actively participated in international conferences, collaborated on high-impact research projects, and contributed to scientific advancements in structural health monitoring. His education laid a strong foundation for his expertise in intelligent structural diagnostics and innovative reinforcement techniques.

WORK EXPERIENCE 💼

📍 Teacher, East China Jiaotong University (2024 – Present)
🔹 Delivers lectures on Introduction to Transportation, Bridge Engineering, and Railway Bridge Engineering.
🔹 Conducts research on sustainable concrete materials, structural durability optimization, and intelligent monitoring systems.
🔹 Engages in collaborative projects to improve infrastructure resilience and corrosion-resistant design.

His professional career blends teaching and research, contributing significantly to civil engineering innovations. His expertise in material sustainability and advanced monitoring systems bridges the gap between academia and practical engineering applications.

AWARDS & HONORS 🏆

🏅 Recognized as a leading researcher in reinforced concrete durability and acoustic emission techniques.
🏅 Multiple Best Paper Awards at international conferences on structural health monitoring.
🏅 Honored for his contributions to innovative composite reinforcement methods.
🏅 Acknowledged for academic excellence with an h-index of 6 and over 150 citations.
🏅 Reviewer for high-impact engineering journals, evaluating cutting-edge research.

His accolades reflect his dedication to advancing civil engineering methodologies, particularly in enhancing structural durability and sustainability.

RESEARCH FOCUS 🔬

🛠 Sustainable Concrete Materials – Investigating eco-friendly, high-performance materials for long-term infrastructure sustainability.
🛠 Structural Durability Optimization – Enhancing resilience against environmental degradation and mechanical stress.
🛠 Intelligent Monitoring Systems – Utilizing acoustic emission techniques for real-time damage assessment and structural health monitoring.
🛠 Corrosion Damage & Strengthening Mechanisms – Developing novel reinforcement techniques for reinforced concrete structures.
🛠 Advanced Composite Structures – Exploring the potential of CFRP (Carbon Fiber Reinforced Polymers) in modern engineering applications.

His research contributes significantly to improving the safety, efficiency, and durability of civil infrastructure worldwide.

PUBLICATION TOP NOTES 📖

📌 Coupled effects of corrosion damage and sustained loading on the flexural behavior of RC beams strengthened with CFRP anchorage systemComposite Structures, 2022
📌 Damage Pattern Recognition for Corroded Beams Strengthened by CFRP Anchorage System Based on Acoustic Emission TechniquesConstruction and Building Materials, 2023
📌 Acoustic emission-based analysis of mechanical behavior and damage evolution in corroded RC square columnsConstruction and Building Materials, 2025
📌 Effects of elevated temperature on rubber concrete: Fracture properties and mechanism analysisConstruction and Building Materials, 2025
📌 Fractal characteristics and damage evaluation of corroded beams under four-point bending tests based on acoustic emission techniquesMeasurement, 2022
📌 Field Testing and Numerical Simulation of the Effectiveness of Trench Isolation for Reducing Vibration Due to Dynamic CompactionApplied Sciences, 2023
📌 Localized corrosion induced damage monitoring of large-scale RC piles using acoustic emission technique in the marine environmentConstruction and Building Materials, 2020
📌 A hybrid methodology for structural damage detection uniting FEM and 1D-CNNs: Demonstration on typical high-pile wharfMechanical Systems and Signal Processing, 2022
📌 Cracking behavior of reinforced concrete beams strengthened with CFRP anchorage system under cyclic and monotonic loadingEngineering Structures, 2020
📌 Damage Mode Identification of CFRP-Strengthened Beam Based on Acoustic Emission TechniqueInternational Federation for Structural Concrete, 2023
📌 Damage test and monitoring of reinforced concrete (RC) beams under four-point bendingICITBS Conference, IEEE, 2022
📌 Elastic Properties of the Remolded Soil During Freezing and Thawing Cycle By Bender ElementsIOP Conference Series: Earth and Environmental Science, 2019

CONCLUSION 🏗️

Tanbo Pan is an emerging expert in civil engineering, integrating structural durability, sustainable materials, and intelligent monitoring systems into his research. His contributions to corrosion damage assessment, composite strengthening techniques, and acoustic emission-based diagnostics are advancing infrastructure resilience. As a faculty member at East China Jiaotong University, he is shaping future engineers while driving innovation in sustainable and intelligent structural solutions. His extensive publications, impactful research, and academic achievements solidify his position as a key figure in modern civil engineering.

Muhammad Aqeel | Structural Analysis | Best Researcher Award

Dr Muhammad Aqeel | Structural analysis | Best Researcher Award

Associate Profeesor, Jiangsu Maritime Institute, China

Dr. Muhammad Aqeel is an accomplished Associate Professor at Jiangsu Maritime Institute, Nanjing, China, specializing in Naval Architecture and Intelligent Manufacturing. With a Ph.D. in Mechanical Engineering (Thermal Engineering) from North China Electric Power University, Beijing, he has extensive expertise in wind turbine blade optimization, fluid-structure interaction, and renewable energy systems. Previously, he served as an Assistant Professor at the Institute of Space Technology, Islamabad, Pakistan, where he contributed to teaching, research, and lab development. His industrial experience includes roles as an O&M Engineer at Ecopack Limited, focusing on thermal power plant operations. Dr. Aqeel has published numerous high-impact journal articles, secured a patent, and received accolades for his teaching and research excellence. His work bridges theoretical innovation and practical applications in energy systems, fluid dynamics, and structural health monitoring.

Professional Profile

Google Scholar

Scopus

Education  🎓

  • Ph.D. in Mechanical Engineering (Thermal Engineering), North China Electric Power University, Beijing, China (2016–2020). Dissertation: The Interaction Theory of Flowing Air and Wind Turbine Blade and Its Application.
  • Master of Sciences in Energy Management, COMSATS Institute of Information Technology, Islamabad, Pakistan (2013–2015). Dissertation: Synthetic Natural Gas: An Alternative Energy Option for Natural Gas.
  • Bachelor’s in Mechanical Engineering Technology (Honors), Preston University, Islamabad, Pakistan (2007–2011). Final Project: Design and Fabrication of a Vertical-Axis Wind Turbine.
  • Recipient of the Chinese Government Scholarship (2016–2020) and Merit Scholarship during MS studies.

Experience 💼

  • Associate Professor, Jiangsu Maritime Institute, Nanjing, China (2023–Present). Teaching mechanical engineering courses and conducting research in naval architecture and intelligent manufacturing.
  • Assistant Professor, Institute of Space Technology, Islamabad, Pakistan (2016–2023). Taught mechanical engineering courses, supervised thesis projects, and developed labs (e.g., Fluid Mechanics, Statics, and Dynamics).
  • Lecturer, Swedish College of Engineering and Technology, Pakistan (2015–2016). Delivered courses and assisted in research proposal development.
  • O&M Engineer, Ecopack Limited, Pakistan (2009–2014). Managed operations and maintenance of thermal power plant equipment, including steam turbines, boilers, and heat exchangers.

Awards and Honors 🏆

  • Best Teaching Award, Institute of Space Technology, Islamabad, Pakistan.
  • Study Excellence Certificate, North China Electric Power University, Beijing, China.
  • Chinese Government Scholarship (4 years) for Ph.D. studies.
  • Merit Scholarship during MS studies at COMSATS Institute of Information Technology.
  • Secured Technology Development Fund (TDF) worth 14 million PKR from the Higher Education Commission, Pakistan.
  • Recognized for organizing international conferences on Robotics, Artificial Intelligence, and Applied Science & Engineering.

Research Focus 🔬

Dr. Aqeel’s research focuses on thermal engineering, fluid-structure interaction, and renewable energy systems. His work includes:

  • Optimizing wind turbine blade design for improved aerodynamic performance and energy conversion.
  • Developing theoretical models for blade chord and twist angle optimization.
  • Investigating fluid dynamics in wind turbines and heat exchangers.
  • Exploring structural health monitoring using flexible strain sensors.
  • Analyzing soil erosion on steep hills and its environmental impact.
  • Contributing to chaos theory and synchronization in dynamical systems.

Publication Top Notes 📚

  1. Soil erosion on steep hills with varying vegetation patterns [J] Physics of Fluids (2025).
  2. Development of AgNPs-PVP/TPU based flexible strain sensors for structural health monitoring [J] Results in Engineering (2024).
  3. Integer and fractional order analysis of a 3D system and generalization of synchronization [J] Chaos, Solitons & Fractals (2022).
  4. Generation of Multidirectional Mirror Symmetric Multiscroll Chaotic Attractors [J] Chaos, Solitons & Fractals (2022).
  5. Theoretical prediction of wear of disc cutters in tunnel boring machines [J] Journal of Rock Mechanics and Geotechnical Engineering (2018).
  6. Dynamical and fractal properties in periodically forced stretch-twist-fold flow [J] Chinese Journal of Physics (2017).
  7. Analogy Theory and application of pressure difference of wind turbine blade profile [J] Journal of Harbin Institute of Technology (2020).
  8. Study on characteristics of the interaction between flowing air and wind turbine blade [J] Journal of China Institute of Water Resources and Hydropower Research (2017).
  9. New Theory and Method for Improving Utilization and Conversion Rate of Wind Turbine [J] Journal of Basic Science and Engineering (2017).
  10. Force analysis of fan blade surface based on Wilson method [C] 14th Annual Academic Exchange Conference of North China Electric Power University (2017).
  11. SNG and N2 comparison and Alternative energy option [C] 1st International Conference on Energy Systems for Sustainable Development (2015).

Conclusion 🌟

Dr. Muhammad Aqeel is a distinguished academic and researcher with a strong background in mechanical engineering, thermal systems, and renewable energy. His contributions to wind turbine optimization, fluid dynamics, and structural health monitoring have been widely recognized through high-impact publications, patents, and awards. With a blend of industrial and academic experience, he continues to drive innovation in energy systems and engineering education, making significant strides in sustainable technology development.

Umair Jalil Malik – Structural Engineering – Young Scientist Award

Umair Jalil Malik - Structural Engineering - Young Scientist Award

National University of Sciences & Technology - Pakistan

AUTHOR PROFILE

Scopus

EARLY ACADEMIC PURSUITS

Umair Jalil Malik commenced his academic journey with a Bachelor of Science in Civil Engineering from the National University of Science and Technology (NUST), specializing in Structural Engineering. His educational background includes a thesis focused on the evaluation of the effective stiffness of High-performance Fiber Reinforced Cement Composites (HPFRCC) and Engineered Cementitious Composites (ECC) at various levels.

PROFESSIONAL ENDEAVORS

Mr. Malik's professional endeavors reflect a dedication to research and practical application in the field of Structural Engineering. He has contributed significantly to the advancement of seismic resilience, sustainable concrete technology, and the application of machine learning in civil engineering. His roles as a Laboratory Engineer at NUST and as a Junior Engineer at INN Consulting Engineers have provided him with hands-on experience in project management, design, and research.

CONTRIBUTIONS AND RESEARCH FOCUS ON STRUCTURAL ENGINEERING

Mr. Malik's research interests encompass a wide range of topics within Structural Engineering, including high-performance composites, geopolymer composites, sustainable concrete technology, and the application of machine learning. His published articles and ongoing projects demonstrate his commitment to advancing knowledge in these areas and addressing real-world challenges in structural design and earthquake resilience.

IMPACT AND INFLUENCE

Mr. Malik's contributions have made a tangible impact on the field of Structural Engineering, particularly in the areas of seismic resilience and sustainable construction materials. His research and publications have garnered citations and recognition, indicating their relevance and influence within the academic community.

ACADEMIC CITATIONS

Mr. Malik's research articles have been cited in the academic community, reflecting the significance and impact of his work in Structural Engineering. His H-index of 3 and research interest score of 50.2 further underscore the influence of his contributions.

LEGACY AND FUTURE CONTRIBUTIONS

Mr. Malik's legacy in Structural Engineering will be characterized by his dedication to innovation, sustainability, and problem-solving. His future contributions are expected to further advance the field, particularly in the development of resilient and environmentally friendly construction materials and technologies.

NOTABLE PUBLICATION

Enhancing Seismic Resilience of Existing Reinforced Concrete Building Using Non-Linear Viscous Dampers.  2023 (4)

Machine Learning-Based Predictive Model for Tensile and Flexural Strength of 3D-Printed Concrete.  2023 (6)

A predictive mimicker for mechanical properties of eco-efficient and sustainable bricks incorporating waste glass using machine learning.  2023 (1)