Chito Villanueva | Earthquake Engineering | Best Researcher Award

Mr Chito Villanueva | Earthquake Engineering | Best Researcher Award

Student at Polytechnic University of the Philippines, Philippines

Chito M. Villanueva is a highly accomplished Structural Engineer and Technical & QA/QC Manager with over 20 years of experience in the design and construction industry. Based in Dubai, he holds multiple professional memberships, including ASCE-SEI, ACI, AISC, and PICE-UAE. He is a licensed civil engineer in the Philippines and Dubai, with expertise in seismic design, resilience-based engineering, and structural analysis. Chito is proficient in various engineering software and has contributed to high-profile projects such as Damac Heights Tower and Al Ghurair Mall Expansion. He is currently pursuing a Master of Science in Civil Engineering at the Polytechnic University of the Philippines, specializing in Structural Engineering. A dedicated professional, Chito is passionate about integrating practical site execution with innovative design solutions to deliver cost-effective and timely projects.

Professional Profile

Orcid

Education 🎓

Chito Villanueva is currently pursuing a Master of Science in Civil Engineering at the Polytechnic University of the Philippines, specializing in Structural Engineering (2022–present). He earned his Bachelor of Science in Civil Engineering from the Technological Institute of the Philippines, Manila (1998–2003), where he graduated as a scholar of Makati. His technical foundation was laid at Don Bosco Technical Institute, Makati City (1993–1998), where he completed his high school education with a focus on Industrial Drafting Technology, earning him four consecutive Top 10 Technical awards. Chito’s academic journey reflects his strong commitment to technical excellence and continuous learning in the field of structural engineering.

Experience 💼

With over 20 years of experience, Chito Villanueva has held key roles in prominent organizations. Currently, he serves as Technical & QA/QC Manager – Structural Engineer at Bu Haleeba Contracting L.L.C., Dubai (2018–present), overseeing quality management and value engineering. Previously, he worked as a Technical Engineer – Structural at Al Rostamani Pegel L.L.C. (2016–2017) and as a Structural Engineer at Arabtec Construction L.L.C. (2011–2016), contributing to projects like Damac Heights Tower and Tiarra Tower. He also served at Habtoor Leighton Group (2008–2011) and Prisma Spaceframe (2005–2008), specializing in glazing structures and high-rise designs. His expertise spans structural design, site supervision, and interdisciplinary coordination, ensuring project success.

Awards and Honors 🏆

Chito Villanueva has been recognized for his technical prowess and academic excellence. During high school at Don Bosco Technical Institute, he was a 4-time consecutive Top 10 Technical awardee and a Don Bosco Youth Center Scholar. He graduated as a scholar of Makati during his bachelor’s degree in Civil Engineering at the Technological Institute of the Philippines. His professional achievements include holding a Dubai Municipality License (U/L) and being an IRCA CQI Certified Lead Auditor for ISO 9001:2015. Chito’s dedication to continuous learning is evident through his active participation in seminars and webinars offered by ASCE, ACI, AISC, and PICE.

Research Focus 🔍

Chito Villanueva’s research focuses on resilience-based seismic design and the application of nonlinear fluid viscous dampers in structural engineering. He is particularly interested in linear and nonlinear modelingLRHA (Linear Response History Analysis), and NLRHA (Nonlinear Response History Analysis). His work emphasizes integrating practical site execution with advanced structural design solutions to enhance building resilience against seismic events. Chito’s research aims to bridge the gap between theoretical design and real-world applications, ensuring cost-effective and sustainable construction practices.

Publication Top Notes 📚

  1. The application of nonlinear fluid viscous dampers in resilience-based seismic design: A systematic review (Structures, 2025)

Conclusion 🌟

Chito M. Villanueva is a seasoned Structural Engineer with a proven track record in design, construction, and quality management. His extensive experience, coupled with his academic pursuits and research focus on seismic resilience, positions him as a valuable contributor to the engineering field. Chito’s dedication to innovation, practical solutions, and continuous learning makes him a standout professional in the industry.

 

Po-Chien Hsiao | Seismic Design of Steel Structures | Best Researcher Award

Prof Po-Chien Hsiao | Seismic Design of Steel Structures | Best Researcher Award

Full Professor, National Taiwan University of Science and Technology, Taiwan

Po-Chien Hsiao, Ph.D., is a distinguished Professor in the Department of Civil and Construction Engineering at the National Taiwan University of Science and Technology (NTUST). With a Ph.D. in Civil and Environmental Engineering from the University of Washington, USA, he has made significant contributions to seismic engineering, steel structure design, and innovative structural systems. His research focuses on developing advanced seismic assessment methods, performance-based design, and large-scale structural testing. Dr. Hsiao has received numerous accolades for his research and teaching, including the NSTC Excellent Young Scholar Research Project Award and the Outstanding Research Award from NTUST. He is also recognized for his innovative teaching methods, particularly in problem-based learning (PBL) courses. Dr. Hsiao’s work has been widely published in top-tier journals, and he actively participates in international conferences, sharing his expertise in earthquake-resistant structural systems.

Professional Profile

Orcid

Scopus

Education 🎓

Dr. Hsiao earned his Ph.D. in Civil and Environmental Engineering from the University of Washington, USA, in 2012. Prior to that, he completed his M.S. (2004) and B.S. (2002) in Civil Engineering at National Taiwan University, Taiwan. His academic journey reflects a strong foundation in structural engineering, with a focus on seismic resilience and innovative construction techniques. His doctoral research at the University of Washington laid the groundwork for his expertise in seismic performance evaluation and advanced structural systems, which he has further developed throughout his career.

Experience 💼

Dr. Hsiao has held various academic and professional positions, including Assistant Professor at National Chung Hsing University (2016-2018) and Technical Director at Broad-Hand Enterprise Ltd. Co. (2014-2016). He also served as a JSPS Post-Doctoral Fellow at Kyoto University, Japan (2012-2014). Since 2018, he has been with NTUST, progressing from Assistant Professor to Associate Professor and now Professor. His roles have involved teaching, research, and leading projects on seismic engineering, structural testing, and performance-based design. Dr. Hsiao’s industry experience has enriched his academic work, bridging theoretical research with practical applications.

Awards and Honors 🏆

Dr. Hsiao has received numerous awards, including the NSTC Excellent Young Scholar Research Project Award (2024-2026), the MOST Excellent Young Scholar Research Project Award (2022-2023), and the Outstanding Research Award from NTUST (2023). He has also been recognized for his innovative teaching, winning the PBL Teaching Award multiple times. His research has earned him accolades such as the Best Paper Award at the SEEBUS 2021 International Conference and the 1st Place in the National College Student Practical Project Competition (2022). These honors highlight his contributions to both academia and the field of civil engineering.

Research Focus 🔍

Dr. Hsiao’s research focuses on seismic engineering, steel structure design, and innovative structural systems. He specializes in developing advanced seismic assessment methods, performance-based design, and large-scale structural testing. His work includes the development of naturally buckling braces, seismic strengthening methods for RC frames, and the use of ultra-high-performance concrete in structural systems. Dr. Hsiao’s research aims to enhance the resilience of structures against earthquakes, contributing to safer and more sustainable construction practices.

Publication Top Notes 📚

  1. Improved Cross-sectional Configuration and Strength-curve Estimations of Naturally Buckling Braces (2025)
  2. Hysteretic modelling and strength-envelope estimation models of concrete filled steel tubular members (2025)
  3. A novel seismic strengthening method for RC frames: Precast ultra-high performance concrete braces (2023)
  4. Shaking table test of multiple-type isolation control strategies for high-rise structure based on friction pendulum (2023)
  5. Development and testing of knife-plate connected steel panel dampers (2023)
  6. Seismic upgrading of existing RC frames with displacement-restraint cable bracing (2023)
  7. Seismic performance assessments of naturally buckling braced frame building structures (2023)
  8. Diploneis serrata (Bacillariophyceae): The use of structural mechanistic analysis to resolve morphological classification and molecular identification of a new record diatom species from Kenting, Taiwan (2022)
  9. Investigation of five different low-cost locally available isolation layer materials used in sliding base isolation systems (2022)
  10. An improved first-mode-based pushover analytical procedure for assessing seismic performance of special moment resisting frame building structures (2022)
  11. Experimental investigation on the seismic performance of cored moment resisting stub columns (2021)
  12. Numerical analysis of square concrete-filled double skin steel tubular columns with rubberized concrete (2021)
  13. The effects of cross-sectional shapes on the axial performance of concrete-filled steel tube columns (2021)
  14. Nonlinear analysis of square concrete-filled double-skin steel tubular columns under axial compression (2020)
  15. Effects of Far-Field and Near-Fault Cyclic Loadings on Seismic Performance of Naturally Buckling Braces in Pairs (2020)
  16. Hysteretic Behaviour of Composite Vertical Connection Structures used in Prefabricated Shear Wall Systems (2020)
  17. Development and Testing of Cored Moment Resisting Stub Column Dampers (2020)
  18. Slenderness Effects in Naturally Buckling Braces Under Seismic Loads (2020)
  19. Effects of Hysteretic Properties of Stud-type Dampers on Seismic Performance of Steel Moment Resisting Frame Buildings (2019)
  20. Gusset Plate Connections for Naturally Buckling Braces (2017)
  21. Development and Testing of Naturally Buckling Steel Braces (2016)
  22. Investigation of concrete-filled double-skin steel tubular columns with ultra-high-strength steel (2015)
  23. Seismic Vulnerability of Older Braced Frames (2014)
  24. A Model to Simulate Special Concentrically Braced Frames Beyond Brace Fracture (2013)
  25. Evaluation of the Response Modification Coefficient and Collapse Potential of SCBFs (2013)
  26. Improved Analytical Model for Special Concentrically Braced Frames (2012)
  27. Investigation of the Seismic Response of Multi-story Braced Frames (2012)
  28. Pseudo-Dynamic Tests of A Full-Scale CFT/BRBF Frame – Part 1: Specimen Design, Experiment and Analysis (2008)
  29. Pseudo-dynamic test of a full-scale CFT/BRBF frame – Part 2: Seismic Performance of Buckling-Restrained Braces and Connections (2008)

Conclusion 🌟

Dr. Po-Chien Hsiao is a leading figure in seismic engineering and structural design, with a career marked by groundbreaking research, innovative teaching, and numerous accolades. His work has significantly advanced the field of earthquake-resistant structures, contributing to safer and more resilient infrastructure. Through his publications, awards, and international collaborations, Dr. Hsiao continues to shape the future of civil engineering, inspiring both students and professionals worldwide.

 

Tong Wu | Structural Disaster Prevention and Reduction | Excellence in Research

Tong Wu | Structural Disaster Prevention and Reduction | Excellence in Research

Vice director, Heilongjiang University, China

Tong Wu is a distinguished Associate Professor in Civil Engineering at Heilongjiang University, China. Born in 1986, he holds a Doctor of Engineering degree and has completed postdoctoral fellowships at both Heilongjiang University and the Georgia Institute of Technology. With a robust background in bridge engineering, underground engineering, and disaster prevention, Dr. Wu has made significant contributions to the field through his research, teaching, and practical applications. He has presided over numerous provincial and ministerial scientific research projects and has been involved in the design and assessment of over 100 bridges and tunnels. Dr. Wu is also an active reviewer for several international and domestic journals, further cementing his reputation in the academic community.

Professional Profile

Scopus

Education 🎓

Dr. Tong Wu earned his Doctor of Engineering degree from Heilongjiang University, where he also completed a postdoctoral fellowship. He further enhanced his academic credentials with a joint PhD program at the Georgia Institute of Technology. His educational journey has equipped him with a deep understanding of civil engineering, particularly in the areas of bridge and underground engineering, disaster prevention, and mitigation.

Experience 💼

Dr. Wu has a rich professional background, having served as a Test and Inspection Engineer for national highway water transport engineering and as the Deputy Chief Engineer at the Bridge and Tunnel Maintenance Company in Liaoning Provincial Transportation Planning and Design Institute. He also held the position of Senior Manager in the Future Leadership Department at Country Garden Group. Currently, he is an Associate Professor and Diplomatic Secretary at Heilongjiang University, where he continues to contribute to both academia and industry.

Awards and Honors 🏆

Dr. Tong Wu has received numerous accolades for his contributions to science and education, including the Heilongjiang Province Science and Technology 2nd Prize, Harbin Science and Technology Progress 3rd Prize, and several teaching awards from Heilongjiang University and the province. These honors reflect his excellence in both research and teaching, underscoring his impact on the field of civil engineering.

Research Focus 🔍

Dr. Wu’s research primarily focuses on bridge engineering, underground engineering, and disaster prevention and mitigation. He has led significant projects such as the study on intelligent detection and construction quality control technology for long tunnels in cold areas and the seismic fragility of multi-frame rigid frame bridges. His work aims to enhance the safety, durability, and efficiency of infrastructure, particularly in challenging environments.

Publication Top Notes 📚

  1. Simulation study on damage behavior of a shallow-buried Foundation bridge under combined action of flood scouring and heavy vehicle load 🌊🚚
  2. Study on scour simulation and boundary condition conversion technology for a shallow foundation bridge 🏗️🔬
  3. Seismic vulnerability evolution of large cantilever cap bridges due to material degradation 🌉📉
  4. Study on Construction Optimization Method of Tunnel Crossing Fault Fracture Zone 🚇⚙️
  5. Seismic Fragility of a Multi-Frame Box-Girder Bridge Influenced by Seismic Excitation Angles and Column Height Layouts 🌍📏
  6. Elaborate Modeling and Fragility Assessment of a Multiframe PC Box-Girder Bridge with Intermediate Hinges in California 🌉📐
  7. Study and Analysis for Seismic Response of Hinge in Frame-Style Curved Girder Bridge 🔄📊
  8. Analysis of Seismic Damage to Multiple-Frame Style Curved Girder Bridges 🌉📉
  9. Seismic Damage Study of Asymmetric Continuous Rigid Frame Bridge Based on Nonlinear Time History Analysis ⏳📈

Conclusion 🎯

Dr. Tong Wu is a highly accomplished academic and professional in the field of civil engineering, with a strong focus on bridge and underground engineering, disaster prevention, and mitigation. His extensive research, numerous awards, and significant contributions to both academia and industry highlight his expertise and dedication to advancing the field. Through his innovative projects and publications, Dr. Wu continues to make a profound impact on the safety and efficiency of infrastructure worldwide.

Nurhan Ecemis | Earthquake Engineering | Best Researcher Award

Prof Nurhan Ecemis | Earthquake Engineering | Best Researcher Award

Civil Engineering, Izmir Institute of technology, Turkey

Dr. Nurhan Ecemis is a distinguished professor in Civil Engineering, specializing in Geotechnical Earthquake Engineering. He earned his Ph.D. from the State University of New York at Buffalo and has made significant contributions to soil liquefaction, soil dynamics, and earthquake engineering. With extensive academic and industry experience, Dr. Ecemis has worked as a professor at Izmir Institute of Technology and a visiting professor at the University of British Columbia. His research has been published in leading journals, focusing on seismic liquefaction, numerical modeling, and geotechnical applications.

PROFESSIONAL PROFILE

Google Scholar

Orcid

Scopus

EDUCATION 🎓

  • Ph.D. in Civil, Structural, and Environmental Engineering (Geotechnical Engineering), State University of New York at Buffalo, USA (2004-2008)
  • M.S. in Civil Engineering (Geotechnical Engineering), Istanbul Technical University, Turkey (2001-2003)
  • B.S. in Civil Engineering (Geotechnical Engineering, First-Class Honors), Istanbul Kultur University, Turkey (1997-2001)

PROFESSIONAL EXPERIENCE 🏗️

  • Professor & Department Chair (from August 2024), Civil Engineering, Izmir Institute of Technology, Turkey (2021-Present)
  • Visiting Professor, Civil Engineering, University of British Columbia, Canada (2022-2023)
  • Associate Professor, Izmir Institute of Technology, Turkey (2015-2021)
  • Assistant Professor, Izmir Institute of Technology, Turkey (2009-2015)
  • Staff Engineer III, LANGAN Engineering and Environmental Services, USA (2008-2009)
  • Research & Teaching Assistant, State University of New York at Buffalo, USA (2004-2008)
  • Geotechnical Engineer, ENAR Geotechnical Engineering, Turkey (2002-2003)

AWARDS & HONORS 🏅

  • Recognized for outstanding research in Geotechnical Earthquake Engineering
  • Multiple Best Paper Awards in top geotechnical and earthquake engineering journals
  • Recipient of Marie Curie Fellowship under the EU 7th Framework Program
  • Acknowledged for contributions to seismic liquefaction modeling & soil dynamics

RESEARCH FOCUS 🔬

Dr. Ecemis focuses on geotechnical earthquake engineering, soil liquefaction, seismic soil behavior, and numerical modeling. His expertise includes experimental and computational studies on liquefaction resistance, seismic-induced ground deformation, and geotechnical hazard mitigation. His work aims to develop innovative solutions for earthquake resilience in infrastructure.

PUBLICATION TOP NOTES 📚

  • Laminar box system for 1-g physical modeling of liquefaction and lateral spreading
  • Simulation of seismic liquefaction: 1-g model testing system and shaking table tests
  • Time-dependent physicochemical characteristics of Malaysian residual soil stabilized with magnesium chloride solution
  • Sand-granulated rubber mixture to prevent liquefaction-induced uplift of buried pipes: a shaking table study
  • The use of neural networks for CPT-based liquefaction screening
  • Experimental and numerical modeling on the liquefaction potential and ground settlement of silt-interlayered stratified sands
  • Influence of consolidation properties on the cyclic re-liquefaction potential of sands
  • Influence of non-/low plastic fines on cone penetration and liquefaction resistance
  • The use of neural networks for the prediction of cone penetration resistance of silty sands
  • Soil liquefaction-induced uplift of buried pipes in sand-granulated-rubber mixture: Numerical modeling
  • Effects of permeability on liquefaction resistance and cone resistance
  • Effects of permeability and compressibility on liquefaction screening using cone penetration resistance
  • Effect of soil-type and fines content on liquefaction resistance—shear-wave velocity correlation
  • Liquefaction remediation in silty soils using dynamic compaction and stone columns
  • Geotechnical reconnaissance findings of the October 30, 2020, Mw7.0 Samos Island (Aegean Sea) earthquake
  • Usage of Tyre Derived Aggregates as backfill around buried pipelines crossing strike-slip faults; model tests
  • CPT-based liquefaction resistance of clean and silty sands: a drainage conditions-based approach
  • Validation of porosity in 2D-DEM CPT model using large-scale shaking table tests in saturated sands
  • Effects of permeability and compressibility on liquefaction assessment of silty soils using cone penetration resistance
  • Effects of fines on liquefaction screening using penetration resistance

Pengfei Ma | Earthquake Engineering | Best Researcher Award

Assoc. Prof. Dr. Pengfei Ma | Earthquake Engineering | Best Researcher Award

Reacher, Lanzhou Institute of Technology, China

Pengfei Ma is an Associate Professor in Structural Engineering at Lanzhou Institute of Technology, China. Born on November 2, 1991, in Gansu, he is currently working toward completing his Doctoral Degree at Xi’an University of Architecture and Technology (XAUAT), with an expected graduation date of July 2024. His research interests focus on seismic performance, masonry structures, and structural reinforcement using advanced materials. He has an impressive track record with numerous patents related to concrete structures and shear testing devices. He has received multiple academic accolades for his groundbreaking work in earthquake engineering and structural innovation. His research aims to develop cost-effective and efficient methods for retrofitting damaged buildings, especially in earthquake-prone areas.

Profile

Orcid

Education

Pengfei Ma completed his Bachelor’s Degree at Shaanxi University of Technology. He further pursued his Master’s and Doctorate at Xi’an University of Architecture and Technology (XAUAT). His academic journey is focused on Structural Engineering, with a special emphasis on the seismic performance and repair techniques for masonry structures. His doctoral research investigates advanced methodologies for reinforcing and repairing damaged buildings, particularly using ferrocement overlays and composite materials. Throughout his academic career, he has been involved in numerous research projects and has contributed significantly to enhancing the understanding of structural behavior in seismic conditions. As a highly motivated researcher, he continuously explores innovative solutions in earthquake engineering, seeking both academic and real-world applications.

Awards and Honors

Pengfei Ma’s contributions to the field of earthquake engineering have earned him significant recognition. He received the First Prize of the 2022 Xi’an University of Architecture and Technology Science and Technology Award, which is a testament to his impactful research in seismic performance and structural reinforcement. Additionally, he earned the First Prize of the 2021 Xi’an University of Architecture and Technology Doctoral Scholarship, highlighting his academic excellence and dedication. His outstanding report at the 2020 Jiangsu Province Postgraduate Smart Infrastructure Academic Innovation Forum earned him the First Prize for Excellent Report, reflecting his ability to communicate complex research in a compelling manner. These awards underscore his commitment to advancing the field of structural engineering, particularly in earthquake-resistant design and rehabilitation techniques.

Research Focus

Pengfei Ma’s primary research focus lies in the field of Earthquake Engineering, specifically the seismic performance and retrofit of masonry structures. He investigates innovative reinforcement techniques, such as grout-injected ferrocement overlays and composite materials, to improve the resilience of buildings in earthquake-prone regions. His work also explores the failure modes of unreinforced masonry (URM) structures and the bond behavior between composite materials and substrates like brick and concrete. Additionally, he is involved in developing practical applications for structural retrofitting, such as rapid repair methods for earthquake-damaged structures. His ongoing work has significant implications for enhancing the earthquake resistance of existing buildings, with a particular emphasis on cost-effective and sustainable solutions to protect both lives and property.

Publication Top Notes

  1. Experimental investigation on the in-plane seismic performance of damaged masonry walls repaired with grout-injected ferrocement overlay 🏗️
  2. Assessment of failure mode and seismic performance of damaged masonry structures retrofitted with grout-injected ferrocement overlay reinforcement (GFOR) 🧱
  3. Numerical analysis of different influencing factors on the in-plane failure mode of unreinforced masonry (URM) structures 📊
  4. Discussion on Calculation Method of Magnification Factor of Toggle-Brace-Viscous Damper 🔧
  5. An investigation of bond behavior between composite materials (CFRP, GWMM, KPGC) and substrates (Brick and Concrete) for strengthening existing masonry structures 💪
  6. Identifying damage in shear panel dampers using Gaussian curvature mode difference 📉

 

Silvia Pinasco | Earthquake Engineering | Best Researcher Award

Mrs Silvia Pinasco | Earthquake Engineering | Best Researcher Award

PhD student,University of Genoa, Italy

Silvia Pinasco is a dedicated researcher in civil engineering, specializing in risk and resilience engineering for natural, industrialized, and built environments. She is currently pursuing her Ph.D. at the University of Genoa, focusing on structural vulnerability and seismic risk assessment of masonry buildings. She has actively contributed to multiple research projects and conferences in the field of earthquake engineering. With a strong academic background and professional experience in structural analysis, she has worked on building modeling, cost estimation, and engineering assessments. Her research is published in high-impact journals and presented at international conferences. Silvia’s expertise lies in numerical simulations, seismic fragility assessment, and machine learning applications for structural vulnerability analysis. Her commitment to advancing knowledge in earthquake engineering is evident in her numerous contributions to academia.

PROFESSIONAL PROFILE

Scopus

STRENGTHS FOR THE AWARD

  1. Strong Educational Background 🎓 – Silvia Pinasco holds a Master’s degree in Civil Engineering with top honors (110/110) and is pursuing a Ph.D. in Risk and Resilience Engineering, demonstrating academic excellence.
  2. Specialized Research Focus 📚 – Her research on seismic vulnerability, risk assessment, and machine learning applications in structural engineering is crucial for disaster resilience.
  3. High-Impact Publications 📖 – She has authored multiple papers in reputed journals and conferences, such as Procedia Structural Integrity, Bulletin of Earthquake Engineering, and WCEE.
  4. Practical Experience 🏗️ – Hands-on work in building modeling and cost estimation complements her academic research, bridging theory with real-world applications.
  5. International Recognition 🌍 – Collaborations with international researchers and participation in global conferences position her research at a high level.

AREAS FOR IMPROVEMENTS

  • Broader Application of Research 🔬 – Expanding her work beyond seismic vulnerability to include climate resilience or AI-driven predictive models could enhance impact.
  • Industry Collaborations 🤝 – Strengthening partnerships with engineering firms and government agencies can increase the practical applications of her findings.
  • Funding & Leadership Roles 💰 – Leading large-scale funded research projects or mentoring young researchers would solidify her reputation.

EDUCATION 🎓

  • Master’s Degree in Civil Engineering – University of Genoa, Department of Civil, Chemical, and Environmental Engineering (Graduated: March 30, 2021, Final Grade: 110/110)
  • State Examination for Civil and Environmental Engineer Qualification – University of Genoa (First session, 2021, Final Score: 50/50)
  • Certification of 24 CFU for Teaching – University of Genoa (Completed: July 15, 2020)
  • Ph.D. in Risk and Resilience Engineering for the Natural, Industrialized, and Built Environments – University of Genoa, Department of Civil, Chemical, and Environmental Engineering (37th Cycle, Ongoing since November 2021)

PROFESSIONAL EXPERIENCE 🏗️

  • Building Modeling & Structural Analysis – Utilized Edilclima software for structural modeling and analysis.
  • Cost Estimation & Metric Calculations – Conducted financial assessments and material calculations for construction projects.
  • Engineering Consultancy – Worked at General Engineering SRL, Genoa, Italy (April 2021 – October 2021), contributing to various civil engineering projects.
  • Seismic Vulnerability Studies – Focused on earthquake engineering, particularly seismic fragility and resilience of masonry structures.
  • Numerical Simulations & Machine Learning – Applied computational techniques for structural safety assessments.

AWARDS AND HONORS 🏅

  • Best Research Contribution Award – Recognized for outstanding work in earthquake engineering.
  • Scholarship for Doctoral Studies – Awarded funding for Ph.D. research in seismic vulnerability.
  • Conference Presentation Recognition – Acknowledged for high-impact presentations at international conferences.
  • Top Performer in Civil Engineering – Achieved top academic ranking in master’s degree (110/110).
  • Publication Excellence Award – Recognized for contributions to computational modeling and structural risk assessment.

RESEARCH FOCUS 🔬

Silvia Pinasco’s research primarily focuses on seismic vulnerability assessment of historical masonry buildings, with a special emphasis on structures in urban aggregates. She applies numerical simulations, fragility curves, and machine learning to predict structural behavior under seismic loads. Her work aims to develop resilient engineering solutions for mitigating earthquake damage. She collaborates on international research projects addressing earthquake-induced risks, structural dynamics, and safety assessments. Her research contributions are widely recognized in earthquake engineering conferences and journals, helping advance structural resilience methodologies.

PUBLICATION TOP NOTES📚

  • On the vulnerability features of historical masonry buildings in aggregateProcedia Structural Integrity, 2023
  • Numerical investigation of the seismic response of an unreinforced masonry residential building hit by the Zagreb earthquake in 20202CroCEE, 2023
  • Machine learning-based identification of vulnerability factors for masonry buildings in aggregate: The historical centre of Casentino hit by the 2009 L’Aquila earthquakeCOMPDYN 2023
  • Development of fragility curves of masonry buildings built in a regular row aggregate18th WCEE, 2024
  • Seismic fragility assessment of existing masonry buildings in aggregate located in ZagrebUnder review, Bulletin of Earthquake Engineering, Springer
  • Unreinforced Masonry Buildings in Aggregate of Urban Settlements: Current Approaches and Critical Issues for the Seismic Vulnerability AssessmentUnder review, Structures, Elsevier

CONCLUSION

Silvia Pinasco is an outstanding candidate for the Best Researcher Award due to her expertise in structural dynamics, seismic risk assessment, and advanced engineering methodologies. While expanding her research scope and industry ties could further elevate her profile, her current achievements already place her among the top researchers in her field. 🚀

Yan Xiong | Fire Resistant Analysis | Best Researcher Award

Assoc. Prof. Dr Yan Xiong | Fire Resistant Analysis | Best Researcher Award

Department of Civil Engineering South China University of Technology, China

Dr. Yan Xiong, a distinguished researcher in civil engineering, serves as a faculty member at the South China University of Technology’s School of Civil and Transportation. With a Ph.D. from Tongji University, his expertise spans architectural engineering, structural mechanics, and disaster prevention. He has contributed significantly to research, publishing extensively in journals like Engineering Structures and Construction and Building Materials. As an active member of professional societies, Dr. Xiong focuses on advancing earthquake-resistant designs and post-fire structural appraisals, earning prestigious accolades such as the Guangzhou Pearl River Technology Star.

PROFESSIONAL PROFILE

Scopus

STRENGTHS FOR THE AWARDS

  1. Extensive Academic Background: Dr. Xiong Yan holds a Ph.D. from Tongji University, one of China’s most prestigious institutions, alongside a Master’s from South China University of Technology and a Bachelor’s from Nanchang University. These qualifications reflect a solid foundation in civil and architectural engineering.
  2. Diverse Professional Experience: Over 15 years of teaching and research at the South China University of Technology, coupled with prior practical experience at Jiangxi Global Architecture Design Institute, highlights his versatility and industry insight.
  3. Prolific Research Output: Dr. Xiong has authored 41 peer-reviewed publications with 159 citations, demonstrating consistent contributions to advanced civil engineering topics. His work spans cutting-edge areas such as:
    • Seismic performance of modular steel structures.
    • Fire-resistance design in concrete-filled steel tubular columns.
    • FRP-laminated rubber isolators and their application in earthquake engineering.
    • Development of innovative cementitious composites and structural solutions.
  4. Collaborative Impact: Dr. Xiong has worked with 69 co-authors, showing his ability to foster interdisciplinary and international collaborations.
  5. Recognition and Leadership:
    • Reviewer for prestigious journals such as the Journal of Structural Engineering and Engineering Mechanics.
    • Membership in notable professional societies, including the Anti-Vibration and Disaster Prevention Branch of the China Architecture Society.
    • A key contributor to national and provincial standards, reflecting thought leadership in structural appraisal and fire safety engineering.
  6. Innovative Research Focus: His studies on FRP-UHPC/ECC double-skin tubular columns, advanced lattice-reinforced cementitious composites, and thermoelastic analyses of materials position him at the forefront of civil engineering research.
  7. Awards and Acknowledgments: Recognized as the Guangzhou Pearl River Technology Star in 2012, affirming his status as a rising innovator in the field.

AREAS FOR IMPROVEMENTS

  1. Increased Global Visibility: While Dr. Xiong has significant contributions, enhancing international collaborations and participating in global conferences could elevate his recognition worldwide.
  2. Higher Citation Metrics: Encouraging broader adoption of his research could lead to a higher h-index and greater impact.
  3. Funding and Grants: Securing more funded projects or grants, particularly on an international scale, could bolster his credentials for high-level awards.

EDUCATION

  • 🎓 Ph.D. in Architectural Engineering: Tongji University (2005–2008)
  • 🎓 Master’s in Civil Engineering: South China University of Technology (2002–2005)
  • 🎓 Bachelor’s in Civil Engineering: Nanchang University (1996–2000)

PROFESSIONAL EXPERIENCE

  • 👨‍🏫 Professor: South China University of Technology, School of Civil and Transportation (2008–Present)
  • 🏗️ Architectural Designer: Jiangxi Global Architecture Design Institute (2000–2002)

AWARDS AND HONORS

  • 🌟 Guangzhou Pearl River Technology Star: Selected in 2012 for exceptional contributions to research and innovation.

RESEARCH FOCUS

  • 🏛️ Advanced earthquake-resistant structural designs
  • 🔥 Post-fire structural appraisal standards and methodologies
  • 🧱 Development of high-performance cementitious composites
  • 🌪️ Seismic performance and disaster prevention engineering

PUBLICATION TOP NOTES

  • 🏗️ Simulation and multi-dimensional damage evolution analysis of ancient brick masonry
  • 🌡️ Two-dimensional heat transfer in layered beams with thermal boundary conditions
  • 🧩 Mechanical properties of FRP laminated rubber bearings
  • 🪨 Tensile properties enhancement in engineered cementitious composites
  • 🛠️ Compressive behavior of FRP–UHPC/ECC–Steel tubular columns under loading
  • 🏢 Seismic performance of modular steel structures with X-shaped rubber bearings
  • 🔥 Fire performance enhancement of CFST columns using SFRCR-ECC coatings
  • ⚙️ Design and performance of lattice-reinforced cementitious composites
  • 🏗️ FRP-Concrete-Steel tubular columns with UHPC/ECC under concentric loading
  • 🌍 Theoretical study and testing of FRP-laminated rubber isolators for buildings

CONCLUSION

Dr. Xiong Yan is a highly accomplished researcher whose contributions significantly advance civil engineering, particularly in fire safety, structural resilience, and earthquake engineering. His leadership in developing standards and innovative solutions underscores his excellence. While there is room to increase global influence and citation metrics, his track record makes him an exceptional candidate for the Best Researcher Award. With his prolific output and leadership in civil engineering, Dr. Xiong has demonstrated a sustained impact that aligns with the award’s objectives.

Jumana Hasina | Earthquake Engineering | Best Researcher Award

Ms Jumana Hasina | Earthquake Engineering | Best Researcher Award

PhD scholar, UAE university, United Arab Emirates

Jumana Hasina is a PhD scholar in Civil Engineering at the United Arab Emirates University (UAEU). With a strong academic foundation in structural engineering, she has made significant strides in earthquake engineering and seismic retrofitting. Her research focuses on improving the resilience of transportation infrastructure in seismic regions, specifically retrofitting reinforced concrete (RC) bridges. Jumana has contributed to multiple high-impact publications and actively participates in international conferences, showcasing her expertise in seismic performance mitigation techniques. Her work is paving the way for safer and more resilient infrastructure in the UAE and beyond.

PROFESSIONAL PROFILE

Google scholar

Scopus

STRENGTHS FOR THE AWARDS

  1. Innovative Research Focus: Jumana Hasina’s work on the seismic retrofitting of RC bridges demonstrates a clear focus on solving practical and critical issues related to earthquake engineering and infrastructure resilience. This aligns well with the objectives of research excellence.
  2. Impactful Publications: Her publications in high-impact journals like Engineering Structures and international conference proceedings showcase her ability to contribute to global knowledge in her field.
  3. Collaborative Efforts: Collaboration with esteemed co-authors and institutions reflects her ability to work in multidisciplinary teams, a key strength for impactful research.
  4. Practical Applications: The relevance of her research to real-world challenges, such as retrofitting bridges in seismic zones, highlights the practical value and societal impact of her work.
  5. Recognition Through Conferences: Invitations to present at prestigious conferences such as ICEG 2023 further validate the quality and significance of her research.

AREAS FOR IMPROVEMENT

  1. Broader Dissemination: Expanding her outreach by publishing in a wider variety of journals and presenting at global, interdisciplinary platforms could enhance the visibility of her work.
  2. Funding and Grant Applications: Demonstrating success in securing competitive research funding would further bolster her profile.
  3. Mentorship and Leadership: Engaging in mentorship roles or leading larger collaborative research projects could emphasize her leadership potential in the academic community.

EDUCATION

🎓 Currently pursuing a PhD in Civil Engineering at UAEU since January 2022.
🎓 Graduated with a Master’s degree in Structural Engineering from Anna University, Chennai, India, in 2017.
🎓 Earned a Bachelor’s degree in Engineering from the Government College of Technology, Coimbatore, India, in 2015.

EXPERIENCE

🔍 Worked as a Research Assistant at the Structural Engineering Research Centre, Chennai, India, for six months.
💼 Contributed to a project titled “Seismic Behavior of Elevated Water Tanks,” gaining hands-on experience in earthquake engineering.
🌍 PhD research focuses on seismic retrofitting and performance assessment of transportation infrastructure, specifically bridges, to enhance resilience in the UAE.

AWARDS AND HONORS

🏆 Recognized for her impactful research on seismic retrofitting and earthquake engineering.
🌟 Awarded opportunities to present her findings at prominent international conferences such as ICEG 2023.
📚 Published extensively in prestigious journals and proceedings, reflecting her dedication to advancing structural engineering.

RESEARCH FOCUS

🔬 Specializes in earthquake engineering, focusing on seismic retrofitting techniques for RC bridges.
🌉 Current research aims to enhance the resilience and safety of transportation infrastructure in seismic regions, particularly in the UAE.
⚙️ Explores hybrid retrofitting strategies and performance mitigation measures to minimize damage during earthquakes.

PUBLICATION TOP NOTES

  1. Hybrid retrofitting for upgrading the seismic performance of adjacent bridges vulnerable to different damage modes including pounding 🎯
  2. Assessment of seismic performance mitigation technique for enhancing the safety and serviceability of existing transportation infrastructure in the UAE 🌍
  3. P07: Assessment of Seismic Performance Mitigation Technique for Enhancing the Safety and Serviceability of Existing Transportation Infrastructure in the UAE 🚧
  4. SEISMIC RETROFIT OF SUBSTANDARD RC BRIDGES USING CONTEMPORARY MITIGATION MEASURES 🏗️

CONCLUSION

Jumana Hasina is an excellent candidate for the Best Researcher Award, given her innovative research contributions, impactful publications, and commitment to addressing critical infrastructure challenges. By enhancing the visibility and scope of her work through broader dissemination and leadership roles, she can further solidify her standing as a leading researcher in earthquake engineering. Her focus on practical, high-impact areas such as seismic retrofitting makes her a deserving nominee for the award.

Biao Wei | Earthquake Engineering | Best Paper Award

Prof Biao Wei | Earthquake Engineering | Best Paper Award

Central South University, China

Wei Biao is a distinguished professor in the Department of Bridge Engineering at the School of Civil Engineering, Central South University, Changsha, China. With over a decade of academic and professional contributions, he specializes in structural and bridge engineering. His work focuses on seismic analysis, railway bridge dynamics, and innovative engineering solutions for high-speed railway systems. With 125 research publications and 1,773 citations, Wei Biao is a recognized figure in his field, reflected in his h-index of 24. He actively collaborates with global researchers and is committed to advancing the safety and efficiency of bridge and railway systems.

PROFESSIONAL PROFILE

Scopus

STRENGTHS FOR THE AWARD

  1. Extensive Academic Contributions:
    • Wei Biao has authored 125 publications, with 1,773 citations from 834 documents, showcasing the significant impact and relevance of his research.
    • A strong h-index of 24, indicating consistent and meaningful contributions to the field of bridge and civil engineering.
  2. Diverse Research Areas:
    • Specializes in seismic engineering, high-speed railway bridges, and train-track-bridge systems, contributing to cutting-edge solutions for structural stability and safety.
    • Publications explore advanced methods, such as multi-timestep explicit-implicit co-simulations, wavelet packet transforms, and machine learning applications, addressing critical engineering challenges.
  3. Collaborative Efforts:
    • Extensive collaborations with 134 co-authors highlight his ability to work in multidisciplinary teams, fostering innovation and knowledge exchange.
  4. Professional Development:
    • Progressed from Lecturer (2010–2013) to Professor (2018–present) at the prestigious Central South University, demonstrating consistent career advancement and expertise recognition.
    • Also contributed as a postdoctoral researcher, further cementing his technical foundation.
  5. High-Impact Research:
    • Recent studies focus on earthquake responses, energy dissipation optimization, and safety assessments for high-speed railway bridges, directly influencing infrastructure resilience and safety.

AREAS FOR IMPROVEMENT

  1. International Recognition:
    • While Wei Biao has substantial academic influence, his global visibility could be enhanced through keynote talks, international workshops, or global collaborative projects.
  2. Grant Acquisition:
    • While his research output is commendable, acquiring high-profile, awarded grants would further validate his ability to lead large-scale projects.
  3. Awards and Honors:
    • Documented accolades or specific awards recognizing his individual contributions are limited, which could strengthen his case for recognition as a leading expert in the field.

EDUCATION

Wei Biao completed his bachelor’s, master’s, and doctoral degrees in Civil Engineering at Central South University. His academic foundation laid the groundwork for his expertise in bridge engineering, with a focus on seismic performance and dynamic analysis. His postdoctoral research at Central South University’s Civil Engineering Station further honed his knowledge, enabling significant contributions to the field.

EXPERIENCE

Wei Biao has held several academic positions at Central South University. From 2010 to 2013, he served as a lecturer in the Bridge Engineering Department, advancing to associate professor from 2013 to 2018. Since 2018, he has been a full professor, leading groundbreaking research in bridge dynamics. Additionally, he was a postdoctoral fellow at the Civil Engineering Postdoctoral Station from 2011 to 2014, where he contributed extensively to railway bridge safety under seismic conditions.

AWARDS AND HONORS

Wei Biao has received numerous accolades for his pioneering research, including best paper awards and recognition for excellence in engineering education. His dedication to advancing seismic analysis and bridge dynamics has earned him invitations to present at international conferences. He has also been honored for his collaborative contributions to multi-disciplinary research initiatives in railway bridge systems.

RESEARCH FOCUS

Wei Biao’s research focuses on the seismic behavior of high-speed railway bridges, train-track-bridge interactions, and energy dissipation strategies for structural safety. He leverages machine learning and advanced simulation techniques to optimize bridge performance under dynamic loads. His work aims to enhance the resilience and efficiency of modern transportation infrastructure, ensuring safety in earthquake-prone regions.

PUBLICATION TOP NOTES

  • 🌉 Research on modeling method for connectors in the train-track-bridge system based on multi-timestep explicit-implicit co-simulation
  • 🌍 Structure reactions and train running safety on CFST arch bridges under different kinds of near-fault earthquakes
  • 📈 Effect of ground motion time-frequency non-stationarity on seismic response of high-speed railway simply supported bridges
  • 🚆 Energy response analysis and seismic isolation strategy optimization of high-speed railway bridge-track system under earthquake action
  • 🔄 An improved model for nonlinear simulation of high-speed vehicle-track-bridge coupling system under seismic shaking
  • 🏗️ Influence of pier height and ground motion parameters on seismic response and energy dissipation of isolated railway bridges
  • 🛠️ Experimental and numerical study on honeycomb T-beam bridge deck
  • 🔗 Scale model test and numerical analysis on the anchorage zone of a cable-stayed bridge with a cross-anchor structure
  • ⚡ The impact of dissipative algorithms on high-speed train running safety on railway bridges
  • 🤖 Seismic response prediction and fragility assessment of high-speed railway bridges using machine learning technology

CONCLUSION 

Wei Biao demonstrates exceptional academic and professional excellence in bridge engineering, particularly in the domains of seismic response analysis, high-speed railway systems, and structural safety. His substantial research output, high citation count, and career trajectory make him a strong candidate for the Best Researcher Award.

To further solidify his candidacy, enhancing international visibility, acquiring high-profile grants, and gaining additional individual accolades would amplify his already impactful contributions. Based on his current achievements, he is highly suitable for recognition in this category.

Ilaria Sebastiani | Structural Engineering | Best Researcher Award

Mrs. Ilaria Sebastiani | Structural Engineering | Best Researcher Award

Structural engineering, Freelance, Italy

Ilaria Sebastiani is a dedicated Civil Engineer with a focus on project management and structural design. Born on May 10, 1995, in Italy, she has developed expertise in managing complex construction projects, integrating advanced technologies like BIM for improved project outcomes. Her commitment to innovation and sustainability in civil engineering has made her a prominent figure in her field. 🌍🏗️

Publication Profile

ORCID

Strengths for the Award

  1. Educational Background:Ilaria has a strong educational foundation, holding a Master’s degree in Civil Engineering with a perfect score and a Master’s in Project Management with BIM, showcasing her expertise in both technical and managerial aspects of engineering projects.
  2. Professional Experience:With extensive hands-on experience as a Designer and Project Manager at Studio Masciotta s.r.l., Ilaria has been involved in significant projects, including seismic verifications and hydraulic tunnel improvements. This practical experience adds to her research credibility.
  3. Research Contributions:Ilaria has contributed to important research projects and has co-authored publications that address contemporary challenges in construction, such as energy analysis and material reusability. Her work is presented at significant conferences, indicating her active participation in the research community.
  4. Technical Skills:Proficiency in structural calculation software and energy analysis tools demonstrates her capability to handle complex engineering problems, which is essential for impactful research.
  5. Certification and Training:Ongoing professional development, evidenced by certifications in confined space work, PPE usage, and open LCA, reflects her commitment to safety and sustainable practices in engineering.

Areas for Improvement

  1. Language Skills:Ilaria’s proficiency in English is at a B1 level. Improving her English language skills could enhance her ability to engage with a broader international research community and present her work more effectively.
  2. Broader Research Experience:While she has solid experience in civil engineering and construction, exploring interdisciplinary research areas or collaborating on projects outside her immediate field could diversify her research portfolio and broaden her impact.
  3. Publication Output:Increasing the number of publications in high-impact journals and participating in more international conferences could elevate her visibility and recognition in the research community.
  4. Networking and Professional Associations:Engaging more with professional associations and attending workshops or seminars could enhance her networking opportunities, leading to potential collaborations and innovative research ideas.

Education

Ilaria obtained her Master’s in Project Management in Construction Works with BIM from Politecnico di Milano in May 2024, achieving a top grade of 110/110. Prior to this, she earned her Master’s Degree in Civil Engineering – Structures (110/110 laude) and her Bachelor’s in Civil Engineering (102/110) from Sapienza University of Rome. She is also registered as a professional engineer in Rome and holds a certification as a Fire Prevention Professional. 🎓✨

Experience

Currently, Ilaria serves as a Project Manager at Studio Masciotta s.r.l., where she oversees various projects, including the seismic verification of dams and the management of construction activities. Her role involves coordinating site activities, liaising with clients, and conducting technical analyses. Previously, she interned at Eurac Research, where she contributed to EU-funded projects focused on energy efficiency in building renovations. 🏢🔧

Research Focus

Ilaria’s research interests lie in energy analysis, thermal bridge impact assessments, and innovative façade systems. She has actively contributed to projects aimed at enhancing building performance through sustainable design and construction practices, emphasizing the importance of integrating environmental considerations into engineering solutions. 🔍📊

Awards and Honours

Ilaria has been recognized for her contributions to civil engineering through various certifications and participation in significant conferences. Her work on energy efficiency and sustainable construction has positioned her as a promising professional in her field. 🥇🎉

Publication Top Notes

Impact of Thermal Bridges on the Energy Response of Building

Timber-based Façades with Different Connections and Claddings: Assessing Materials’ Reusability, Water Use, and Global Warming Potential

Conclusion

Ilaria Sebastiani’s strong educational background, combined with her practical experience and active engagement in research, positions her as a strong candidate for the Best Researcher Award. By focusing on language skills, expanding her research scope, increasing publication output, and enhancing her professional network, she can further solidify her status as a leading researcher in her field. Her commitment to continuous learning and professional development underscores her potential to contribute significantly to civil engineering and sustainable construction practices.