Baolin Liu | Electrochemical energy storage | Best Researcher Award

Dr Baolin Liu | Electrochemical energy storage | Best Researcher Award

Postdoctor, Southern University of Science and Technology, China

Baolin Liu is a dedicated researcher with a strong academic background in chemistry and physics. He holds a Doctor of Science in Chemistry from Xinjiang University and is currently a post-doctoral fellow at the Southern University of Science and Technology. His research focuses on advanced materials for energy storage and conversion, particularly in sodium-ion batteries, supercapacitors, and catalytic applications. With over 30 publications in high-impact journals, Baolin has made significant contributions to the field of materials science. His work emphasizes the development of nanostructured materials, defect engineering, and heterostructures to enhance electrochemical performance. Baolin is also an active member of the scientific community, contributing to various collaborative projects and mentoring students.

Professional Profile

Orcid

Scopus

Education 🎓

  • 2024.01-Present: Post-doctoral Fellow, Physics, Southern University of Science and Technology, China.
  • 2019.09-2023.12: Doctor of Science, Chemistry, Xinjiang University, China.
  • 2016.09-2019.06: Master of Science, Chemistry, Xinjiang University, China.
  • 2014.09-2015.06: Bachelor of Engineering, Chemical Engineering, Beijing University of Chemical Technology, China.
  • 2012.09-2016.06: Bachelor of Engineering, Chemical Engineering, Tarim University, China.

Experience 💼

  • Post-doctoral Research: Focused on advanced materials for energy storage and conversion, including sodium-ion batteries and supercapacitors.
  • Doctoral Research: Specialized in catalytic materials for CO oxidation and coal liquefaction, with expertise in nanostructured materials and defect engineering.
  • Collaborative Projects: Worked on interdisciplinary projects involving nanomaterials, electrochemistry, and catalysis.
  • Mentorship: Guided graduate and undergraduate students in research methodologies and experimental techniques.

Awards and Honors 🏆

  • Scopus Author ID: Recognized for high-impact publications in materials science and chemistry.
  • Research Excellence: Multiple papers published in top-tier journals like Journal of Colloid and Interface ScienceSmall, and Chemical Engineering Journal.
  • Collaborative Achievements: Contributed to projects funded by national and institutional grants.
  • Academic Recognition: Received accolades for innovative research in energy storage and catalytic materials.

Research Focus 🔬

Baolin Liu’s research focuses on the design and synthesis of advanced materials for energy storage and conversion. His work includes:

  • Sodium-ion Batteries: Developing high-performance anode materials using nanostructured composites and defect engineering.
  • Supercapacitors: Exploring carbon-based materials and heterostructures for enhanced electrochemical performance.
  • Catalysis: Investigating catalytic materials for CO oxidation, hydrogenation, and environmental applications.
  • Nanomaterials: Engineering nanostructured materials with tailored properties for energy and catalytic applications.

Publication Top Notes 📚

  1. 2D heterostructural Mn2O3 quantum dots embedded N-doped carbon nanosheets with strongly stable interface enabling high-performance sodium-ion hybrid capacitors
  2. Construction of WS2/NC@C nanoflake composites as performance-enhanced anodes for sodium-ion batteries
  3. Enhancing sodium-ion battery performance through crystalline water-assisted Zn2V2O7 anode material
  4. High quality bifunctional cathode for rechargeable zinc-air batteries using N-doped carbon nanotubes constrained CoFe alloy
  5. Metal-electronegativity-induced sulfur-vacancies and heterostructures of MnS1-x/ZnS-NC@C with dual-carbon decoration for high-performance sodium-ion storage
  6. Nano-bowl-like carbon confined 1T/2H-MoS2 hybrids as anode for high-performance sodium-ion storage
  7. Remarkable upgrade of hydrogen evolution activity up to 40.8 folds and mechanistic investigation of expediting charge transfer achieved by Bi2O3-modified TiO2 photocatalyst
  8. Structure and Defect Engineering of V3S4−xSex Quantum Dots Confined in a Nitrogen-Doped Carbon Framework for High-Performance Sodium-Ion Storage
  9. Synergistic promotion for the performance of photocatalytic carbon dioxide reduction by vacancy engineering and N-doped carbon nanotubes
  10. Bi@C sandwiched carbon nanolayers enables remarkable cyclability at high current density for lithium-ion batteries
  11. Construction of oxygen vacancies and heterostructure in VO2-x/NC with enhanced reversible capacity, accelerated redox kinetics, and stable cycling life for sodium ion storage
  12. Honeycomb carbon obtained from coal liquefaction residual asphaltene for high-performance supercapacitors in ionic and organic liquid-based electrolytes
  13. Oxygen self-doped hierarchical porous carbons derived from coal liquefaction residue for high-performance supercapacitors in organic and ionic liquid-based electrolytes
  14. Sulfur-Bridged Bonds Heightened Na-Storage Properties in MnS Nanocubes Encapsulated by S-Doped Carbon Matrix Synthesized via Solvent-Free Tactics for High-Performance Hybrid Sodium Ion Capacitors
  15. Constructing ultrafine Cu nanoparticles encapsulated by N-doped carbon nanosheets with fast kinetics for high-performance lithium/sodium storage
  16. Phosphorus/sulfur co-doped hard carbon with a well-designed porous bowl-like structure and enhanced initial coulombic efficiency for high-performance sodium storage
  17. Solid-State Construction of CuOx/Cu1.5Mn1.5O4 Nanocomposite with Abundant Surface CuOx Species and Oxygen Vacancies to Promote CO Oxidation Activity
  18. Copper-based catalysts for CO oxidation, 用于CO氧化的铜基催化剂研究进展
  19. In-situ impregnation of β-FeOOH on coal by solid-state reaction toward direct coal liquefaction
  20. Insight into the Crystal Structures and Surface Property of Manganese Oxide on CO Catalytic Oxidation Performance
  21. A “two-pronged” strategy: Boosting electrocatalytic oxygen reduction reaction property based on the Ni–MnO synergistic effect and high conductivity of rod-like Ni–MnO/N–C composites prepared via simple solution-free route
  22. Engineering CuOx–ZrO2–CeO2 nanocatalysts with abundant surface Cu species and oxygen vacancies toward high catalytic performance in CO oxidation and 4-nitrophenol reduction
  23. The solid-state in situ construction of Cu2O/CuO heterostructures with adjustable phase compositions to promote CO oxidation activity
  24. Fe3O4 Nanoparticles Supported on Modified Coal toward Catalytic Hydrogenation of Coal to Oil
  25. Solvent‐Free Chemical Approach to Synthesize Co Nanoparticles Supported on N‐doped Porous Carbon for Efficient Electrocatalytic Oxygen Reduction
  26. Room-Temperature Solid-State Preparation of CoFe2O4@Coal Composites and Their Catalytic Performance in Direct Coal Liquefaction
  27. Cu/Cu2O/rGO nanocomposites: solid-state self-reduction synthesis and catalytic activity for p-nitrophenol reduction
  28. Optimum Balance of Cu + and Oxygen Vacancies of CuO x ‐CeO 2 Composites for CO Oxidation Based on Thermal Treatment
  29. V-modified Co3O4 nanorods with superior catalytic activity and thermostability for CO oxidation

Conclusion 🎯

Baolin Liu is a highly deserving candidate for the Best Researcher Award. His prolific publication record, innovative research contributions, and interdisciplinary expertise make him a standout researcher in materials science and chemistry. While there are areas for improvement, such as expanding international collaborations and industry engagement, his strengths far outweigh these considerations. His work has already made a significant impact, and with continued dedication, he is poised to achieve even greater heights in his research career.

Bablu Mordina | Supercapacitor for energy storage application | Innovations in Materials Engineering Award

Dr Bablu Mordina | Supercapacitor for energy storage application | Innovations in Materials Engineering Award

Scientist ‘E’, DMSRDE (DRDO) , Kanpur

Dr. Bablu Mordina is a distinguished scientist currently serving as Scientist D at the Defence Materials and Stores Research and Development Establishment (DMSRDE), DRDO, Kanpur. He specializes in the development of advanced nanomaterials for sensor and energy applications. With over a decade of experience, Dr. Mordina has contributed significantly to nanocomposites, supercapacitors, microwave absorbers, and eco-friendly materials. He holds 16 international journal publications, 5 Indian patents, and 4 book chapters. Dr. Mordina has presented his research at prestigious conferences and delivered invited talks at renowned institutions.

PROFILE

Scopus

STRENGTHS FOR THE AWARD

  1. Diverse Expertise in Nanomaterials and Sensors: Dr. Bablu Mordina has extensive experience in various cutting-edge fields, including nanomaterials, energy devices, supercapacitors, and magnetic nanoparticles. His work on metal oxide and bio-waste-based carbon nanostructures, supercapacitors, and nanocomposites for microwave absorption is highly relevant in modern research areas, demonstrating his expertise in both material science and energy storage.
  2. Innovative Contributions to Defense and Industry: His contributions to the development of novel nanomaterials for the defense sector, including eco-friendly coolants for radars and vehicles, and high-pressure hydraulic fluids for the Indian Navy, underscore his innovative applications of research to practical problems.
  3. Research Output: With 16 international journal publications, 5 patents, 4 technical reports, and 4 book chapters, Dr. Mordina’s prolific output in academic and applied research demonstrates his significant contribution to the field. His work has been presented at both national and international conferences, reflecting his active engagement in the scientific community.
  4. Recognition and Collaboration: Dr. Mordina has received recognition through citations of his work, showing the impact of his research. Additionally, his role in delivering invited talks at reputed academic and research institutes highlights his ability to disseminate knowledge and collaborate effectively.
  5. Commitment to Advancing Technology: His work in developing magnetorheological elastomers for vibration damping and wear-resistant polymer nanocomposites highlights his commitment to advancing technology with applications in both industrial and defense sectors.

AREAS FOR IMPROVEMENTS

  1. Collaborative Work with Broader Industries: While his work is highly impactful in defense and research, expanding collaborations with broader industrial sectors and non-defense applications could enhance the reach and application of his innovations. This could also provide further avenues for interdisciplinary research.
  2. Increased Public Engagement and Outreach: Although Dr. Mordina has delivered invited talks, expanding his public outreach to communicate his work to a broader audience—including students, policymakers, and the general public—could enhance the visibility and impact of his research.
  3. Diversification of Research Areas: While his work is impressive, focusing on diversifying the range of applications for his nanomaterials and energy devices—perhaps in sustainable energy or health care—could further establish him as a leader in multiple fields.

EDUCATION

🎓 B.Sc. Chemistry (Hons) – University of Calcutta (2002)
🎓 B.Tech. in Polymer Science & Technology – University of Calcutta (2005)
🎓 M.Tech. in Polymer Science & Technology – University of Calcutta (2009)
🎓 Ph.D. in Chemical Engineering – Indian Institute of Technology Kanpur (2017)

EXPERIENCE

🔬 Scientist D, DRDO (2009–Present): Focused on nanomaterials for sensors and energy devices.
🏭 Industrial Experience, Kalpana Industries Ltd. (2 years): Specialized in flexible cable compounds including polyvinyl chloride and polyethylene composites.

AWARDS AND HONORS

🏆 5 Indian Patents
🏆 16 International Journal Publications
🏆 10 Research Papers Presented at Conferences
🏆 8 Invited Talks at Academic and Research Institutes

RESEARCH FOCUS

🔍 Development of nanomaterials for sensors and energy devices.
🔍 Supercapacitors using bio-waste carbon nanostructures.
🔍 Nanocomposites for microwave absorption and vibration damping.
🔍 Eco-friendly coolants and hydraulic fluids for defense platforms.

PUBLICATION TOP NOTES

  1. 📖 Functional Polymer Nanocomposites as Supercapacitors for Health Care
  2. 📖 Structure-Property Relationship in Binder-Free Asymmetric Supercapacitor
  3. 📖 Binder-Free Hybrid Supercapacitor Based on Nickel Ferrite Nanoparticles
  4. 📖 Carbon Nanofibers-Reinforced Polymer Nanocomposites for Microwave Absorption
  5. 📖 Smart Elastomeric Hydrogel Containing Nanosized Barium Ferrite
  6. 📖 Impact of Process Conditions on NiMoO4 Nanorods for Supercapacitors
  7. 📖 Fe3O4 Nanoparticles in Hollow Mesoporous Carbon Nanofibers for Microwave Absorption
  8. 📖 Graphene Oxide in Magnetorheological Hydrogel for Enhanced Behavior
  9. 📖 Friction and Dry Sliding Wear of Bismaleimide with Carbon Nanotubes
  10. 📖 Thermal and Mechanical Properties of Poly(Vinyl Butyral)-Modified Nanocomposites

CONCLUSION

Dr. Bablu Mordina is highly deserving of the Best Researcher Award due to his diverse expertise in nanomaterials, energy devices, and defense-related applications. His extensive research output, industrial experience, and innovative contributions to both academic and defense sectors demonstrate his significant role in advancing modern science. While there are areas for improvement in terms of expanding collaborations and public outreach, his accomplishments make him a standout candidate for the award. His continued focus on developing novel technologies with real-world applications further solidifies his position as a leading researcher in his field.