Sandra Cunha Gonçalves | Materials Science and Engineering | Women Researcher Award

Prof. Dr. Sandra Cunha Gonçalves | Materials Science and Engineering | Women Researcher Award

Research Teacher | Federal Institute of Bahia | Brazil

Prof. Dr. Sandra Cunha Gonçalves has developed a solid academic and scientific career in Civil Engineering, Sustainability, and Environmental Studies, focusing on innovative solutions for the reuse of waste materials in the construction industry. Her research emphasizes solid waste management and the development of eco-friendly materials that incorporate vegetal fibers, modified starch, recycled gypsum, and other industrial by-products to minimize environmental impacts and promote sustainable practices in social housing. Gonçalves has contributed to advancing sustainable construction technologies through the creation of composites and biocomposites with improved physical and mechanical properties, offering alternatives to conventional materials with high energy consumption. Her ongoing projects explore life cycle analysis of materials, the use of green coconut fibers, and polymeric emulsions in gypsum matrices, generating significant results for structural efficiency and environmental performance. Her scientific output includes publications in national and international journals, book chapters, and conference presentations on sustainability, bioconstruction, and waste management. In addition to her research, she promotes extension activities that integrate social technology, environmental education, and vernacular architecture, strengthening the connection between science, culture, and community. At the Federal Institute of Bahia, Gonçalves leads research groups focused on material innovation and environmental education, mentoring new researchers committed to socio-environmental responsibility and construction efficiency. Her professional journey is distinguished by a strong dedication to sustainability, the integration of applied science with technical education, and the continuous pursuit of viable solutions that balance technical performance with the preservation of natural resources.

Profile: ORCID
Featured Publications
Gonçalves, S. C., da Silva Junior, M. F., Souza, M. T., de Amorim Júnior, N. S., & Ribeiro, D. V. (2025). Physicomechanical properties of recycled gypsum composites with polyvinyl acetate emulsion and treated short green coconut fibers. Buildings.

Junsong Yang – Materials Science and Engineering – Best Researcher Award

Junsong Yang - Materials Science and Engineering - Best Researcher Award

Professor | Bengbu Medical University | China

Junsong Yang, affiliated with Bengbu Medical University in China, has established a solid research footprint with contributions that span advanced materials, nanotechnology, and photocatalysis. The profile records 22 publications that collectively garnered 66 citations, reflecting recognition from the scientific community and an h-index of 5, demonstrating both productivity and impact. The works highlight innovative approaches in material design, such as the preparation of Ti₃C₂/SA-TCPP composites through π–π interactions, which significantly improved hydrogen peroxide production and enabled efficient photocatalytic self-Fenton degradation of pollutants like 2,4-dichlorophenol, underscoring the environmental relevance of this research. Another notable study developed ratiometric FRET-encoded Zr-MOF@Au-FAM/TAMRA nanoassemblies integrated with tetrahedral framework nucleic acid-functionalized magnetic beads and DNA walkers, advancing ultrasensitive detection methods for antibiotics such as enrofloxacin and ciprofloxacin, indicating a strong interdisciplinary connection between chemistry, biotechnology, and environmental safety. The author’s research trajectory shows a consistent focus on combining functional nanomaterials with catalytic and sensing applications, addressing both energy conversion and pollution remediation challenges. Co-authorship with 55 collaborators reveals an extensive professional network, enhancing the interdisciplinary scope of the research. The publication record in high-impact journals, including Separation and Purification Technology and Chemical Engineering Journal, illustrates the quality and relevance of contributions in both applied and fundamental science. The consistent engagement with pressing global issues such as environmental pollution, sustainable chemical processes, and biomedical detection technologies positions the work as impactful and forward-looking. While awarded grants are not listed, the productivity and growing citation base suggest increasing recognition and potential for future funded projects. The scholarly activities demonstrate a balance between methodological innovation and practical application, making Junsong Yang’s contributions valuable for advancing modern chemical engineering and materials science, with clear implications for environmental sustainability, energy solutions, and public health monitoring.

Profile: Scopus 
Featured Publications:

Preparation of Ti3C2/SA-TCPP via π–π interaction for the enhanced production of H2O2 and the highly efficient photocatalytic-self-Fenton degradation of 2,4-dichlorophenol. (2025). Separation and Purification Technology.

Ratiometric FRET encoding Zr-MOF@Au-FAM/TAMRA nano assemblies based on tetrahedral framework nucleic acid-functionalized magnetic beads and DNA walker for ultrasensitive quantifying enrofloxacin and ciprofloxacin. (2025). Chemical Engineering Journal.

Yaxing Liu – Materials Science and Engineering – Best Researcher Award

Mr. Yaxing Liu - Materials Science and Engineering - Best Researcher Award

lecturer | Taiyuan University of Technology | China

Mr. Yaxing Liu has established strong expertise in the field of mechanical design and theory with a research focus on advanced rolling technology, material forming processes, and fatigue analysis of high-performance steels. His work investigates the mechanisms of strip edge defects, deformation behaviors in composite rolling, and fatigue performance under varying stress conditions, providing valuable insights for enhancing the precision, durability, and efficiency of manufacturing systems. He has contributed to the development of innovative control strategies for trimming processes and created accurate modeling approaches for predicting warping and deformation during steel and aluminum thin strip composite rolling. His research integrates both theoretical modeling and experimental validation to solve complex industrial challenges, ensuring significant improvements in quality control and defect prevention in metal forming industries. In addition to scholarly publications in high-impact journals, Liu’s contributions include patents addressing roll convexity adjustment mechanisms and compensation methods for roll diameter defects in rolling mills, showcasing his ability to translate fundamental research into practical engineering solutions. His continuous engagement in material behavior analysis under stress, defect mitigation techniques, and optimization of manufacturing processes reflects a clear trajectory toward advancing modern mechanical design and metallurgical engineering. With active collaboration across disciplines and consistent innovation in mechanical system optimization, his research strengthens both academic knowledge and industrial application. Yaxing Liu’s work demonstrates a balance of theoretical insight, experimental application, and practical implementation, marking him as a valuable contributor to the development of advanced rolling and forming technologies with wide relevance to the steel and aluminum industries. 155 Citations by 139 documents, 57 Documents, 7 h-index View.

Profile: Scopus
Featured Publications:
  1. Effect of multi‒directional forging on the evolution of intermetallic precipitates and mechanical properties in novel light refractory high-entropy alloys. (2025). Intermetallics.

  2. DDFNet: real-time salient object detection with dual-branch decoding fusion for steel plate surface defects. (2025). Journal of Iron and Steel Research International.

  3. Study on influence and mechanism of steel / aluminum composite thin strips preparation process on interfacial bonding strength. (2025). Suxing Gongcheng Xuebao Journal of Plasticity Engineering.

  4. Research on unbonded defect imaging method of corrugated clad plate based on laser ultrasonics. (2025). Measurement Journal of the International Measurement Confederation.

  5. Effect of two-pass rolling of textured roll and polished roll on surface topography and mechanical properties of 316L stainless steel ultra-thin strip. (2025). Journal of Iron and Steel Research International.

Jialin Liu – Materials Science and Engineering – Best Researcher Award

Jialin Liu - Materials Science and Engineering - Best Researcher Award

Southeast University - China

AUTHOR PROFILE

GOOGLE SCHOLAR

SCOPUS

🎓 SUMMARY

Jialin Liu is a leading researcher in the field of composite materials and structural engineering, with expertise extending from molecular dynamics to macro-scale simulations. A foundation in Naval Architecture and Ocean Engineering laid the groundwork for an impressive academic path that culminated in a Ph.D. from the City University of Hong Kong. The focus of research has consistently bridged theory, experiment, and application, earning recognition across high-impact journals. Through a career deeply rooted in materials science, Liu has demonstrated versatility in tackling real-world engineering challenges with scientifically rigorous solutions, leaving a mark in both academic and applied engineering communities.

🏫 EARLY ACADEMIC PURSUITS

Jialin Liu began academic exploration at the Huazhong University of Science and Technology, earning a B.S. and M.S. in Naval Architecture and Ocean Engineering. Early research included structural mechanics and composite design, highlighting potential for innovation in sandwich structures and Y-shaped core panels. These formative years provided essential hands-on exposure to mechanical testing and material characterization. Driven by curiosity and academic rigor, Liu expanded knowledge through detailed analysis of failure mechanisms and novel fabrication techniques. This period laid the technical and conceptual foundation required for subsequent interdisciplinary research in civil engineering, nanomaterials, and sustainable infrastructure systems.

🏗️ PROFESSIONAL ENDEAVORS IN STRUCTURAL INNOVATION

Following the master's degree, Jialin Liu pursued a Ph.D. at the City University of Hong Kong under the mentorship of Denvid Lau. Research during this period integrated multiscale modeling and experimentation, focusing on cementitious composites and nanomaterial reinforcements. Collaborations with international scholars and contributions to advanced materials journals demonstrate professional dedication. Liu’s engagement in projects involving boron nitride nanosheets, FRP-reinforced concrete, and geopolymer composites reveals a consistent drive to address structural integrity and durability under complex conditions. The academic career continues at Southeast University, where ongoing contributions enrich the Department of Civil and Architectural Engineering with both teaching and research.

🧪 CONTRIBUTIONS AND RESEARCH FOCUS

Jialin Liu’s research primarily investigates the mechanical behavior of composite structures under varied loading conditions, integrating nanoscale and macro-scale analysis. Key focus areas include boron nitride nanosheet-reinforced cement, self-healing composites, and FRP materials under thermal and moisture-induced stresses. Liu applies a combination of experimental, theoretical, and computational tools, including molecular dynamics simulations and finite element analysis. Several papers as corresponding author reflect leadership in the field. By innovating in sustainable building materials and developing methods to enhance structural resilience, Liu contributes significantly to material science, structural engineering, and environmental sustainability with high relevance to modern infrastructure challenges.

🏅 ACCOLADES AND RECOGNITION

With over 20 peer-reviewed publications in prestigious journals such as Applied Surface Science, Materials and Design, and Composites Science and Technology, Jialin Liu’s academic excellence has received global recognition. Multiple first-author and corresponding-author papers underscore independent contribution and leadership in scientific discovery. Collaboration with esteemed researchers including Denvid Lau and Jiayi Liu signals recognition from established academic circles. Many studies have been published in Q1 journals, highlighting the impactful and innovative nature of the research. The ability to publish across interdisciplinary domains—from nanotechnology to structural composites—demonstrates a rare versatility that is widely acknowledged within the scientific and engineering communities.

🌍 IMPACT AND INFLUENCE IN ENGINEERING SCIENCE

Jialin Liu’s work holds transformative potential for future construction practices, especially in enhancing material performance under harsh environmental conditions. By combining nanoscale innovations with structural modeling, Liu advances both scientific knowledge and practical solutions for sustainable infrastructure. Research on moisture resistance, high-temperature tolerance, and self-healing materials aligns well with global climate resilience goals. Findings have informed developments in structural health monitoring and retrofitting practices, offering new paths to prolong infrastructure lifespan. Liu’s interdisciplinary contributions influence peers, policy thinkers, and industry professionals aiming to create safer, smarter, and more durable engineering systems that respond to evolving societal needs.

📘 LEGACY AND FUTURE CONTRIBUTIONS

As a scholar whose work bridges civil engineering, nanotechnology, and material science, Jialin Liu is poised to shape future generations of research and innovation. Current studies on intelligent materials, thermal performance, and composite interfaces suggest a forward-looking vision that addresses both engineering efficiency and environmental responsibility. The legacy is not only in publications but in establishing frameworks that others can build upon. Liu is expected to continue exploring interdisciplinary domains, possibly integrating AI-driven structural diagnostics and data-enhanced modeling. With a clear trajectory of impactful research, Liu’s future contributions will likely redefine boundaries in civil materials and sustainable infrastructure design.

PUBLICATION

Title: Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores
Authors: J. Liu, J. Liu, J. Mei, W. Huang
Journal: Composites Science and Technology, 159, 87–102, 2018


Title: A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel
Authors: J. Mei, J. Liu, J. Liu
Journal: Composites Part A: Applied Science and Manufacturing, 102, 28–39, 2017


Title: Two-dimensional nanomaterial-based polymer composites: Fundamentals and applications
Authors: J. Liu, D. Hui, D. Lau
Journal: Nanotechnology Reviews, 11(1), 770–792, 2022


Title: Mechanical response of a novel composite Y-frame core sandwich panel under shear loading
Authors: J. Liu, T. Zhang, W. Jiang, J. Liu
Journal: Composite Structures, 224, 111064, 2019


Title: Bending response and failure mechanism of composite sandwich panel with Y-frame core
Authors: J. Liu, Z. He, J. Liu, W. Huang
Journal: Thin-Walled Structures, 145, 106387, 2019


Title: Temperature effects on the compressive properties and failure mechanisms of composite sandwich panel with Y-shaped cores
Authors: J. Zhou, Y. Wang, J. Liu, J. Liu, J. Mei, W. Huang, Y. Tang
Journal: Composites Part A: Applied Science and Manufacturing, 114, 72–85, 2018

Wioletta Raczkiewicz – Materials Science and Engineering – Best Researcher Award

Wioletta Raczkiewicz - Materials Science and Engineering - Best Researcher Award

Kielce University of Technology - Poland

AUTHOR PROFILE

SCOPUS
GOOGLE SCHOLAR
ORCID

SUMMARY

Wioletta Raczkiewicz is a civil engineering expert with extensive academic and professional engagement in concrete structures, building renovation, and historic building conservation. With nearly three decades of involvement in technical education and structural research, the profile is marked by progressive academic roles at Kielce University of Technology. Key contributions include the development of stochastic models for fiber-reinforced concrete and ongoing dedication to educational and architectural engineering excellence. Current responsibilities as Associate Professor include teaching, mentoring, and research leadership in advanced concrete technologies and structural diagnostics.

EDUCATION

Earned a Master of Engineering in Civil Engineering in 1994 from Kielce University of Technology, with a specialization in Building Renovations and Historic Conservation. The thesis focused on adaptive reconstruction of Villa Zielona into a guesthouse. In 2008, completed a Doctor of Technical Sciences degree in Civil Engineering, specializing in Concrete Structures. The doctoral dissertation investigated stochastic parameter distributions in fiber-reinforced concrete under variable loading, reflecting a high level of analytical and modeling capability within modern structural engineering contexts.

PROFESSIONAL EXPERIENCE

Began professional career in 1995 at the Research Institute of Roads and Bridges in Warsaw, Kielce branch, as a technologist. Continued academic work at Kielce University of Technology from 1997 onward across multiple faculty transformations, evolving from early technical roles to current designation as Associate Professor since December 2023. Over the years, responsibilities have included curriculum development, scientific research, and faculty service. Academic progression reflects long-term contributions in concrete technology, civil infrastructure diagnostics, and the integration of historic and modern construction methods.

RESEARCH INTEREST

Focus areas include fiber-reinforced concrete behavior under variable loads, stochastic modeling in structural engineering, diagnostics of construction materials, and conservation technologies for historical buildings. Interested in the development of innovative rehabilitation solutions and structural assessments through computational and empirical approaches. Emphasizes interdisciplinary integration between modern construction science and architectural heritage preservation. Research aims at improving reliability and sustainability of concrete structures while advancing methodologies in structural health monitoring and damage prediction under real-world operational conditions.

AWARD AND HONOR

Recognized within institutional settings for consistent academic performance and contributions to structural engineering research. While no international honors are explicitly listed, appointment to Associate Professor reflects institutional acknowledgment of scholarly merit and educational impact. Continued involvement in faculty development and mentoring underscores professional credibility and recognition within the academic engineering community. Contributions to doctoral supervision and peer-reviewed scientific work further illustrate recognition and trust in research excellence and educational leadership in civil engineering.

RESEARCH SKILL

Possesses advanced capabilities in stochastic modeling, finite element analysis, material diagnostics, and structural assessment techniques. Proficient in the application of probabilistic methods to evaluate concrete behavior under stress conditions. Skilled in developing interdisciplinary projects involving historic building technologies and sustainable construction practices. Demonstrates technical proficiency in laboratory methods for testing fiber-reinforced composites and interpreting complex data sets for real-world engineering applications. Also experienced in supervising engineering theses and managing collaborative academic research projects with a focus on reliability and material performance.

PUBLICATIONS TOP NOTED

Authored several technical publications in the field of concrete structures and structural modeling. Focus areas in these works include reliability assessment of fiber-reinforced materials and diagnostic techniques in civil engineering structures. Publications contribute to ongoing discourse in probabilistic evaluation of construction materials and are regularly cited within specialized journals of civil engineering and materials science. Key works also address structural behavior under dynamic and cyclic loads, further emphasizing expertise in advanced analysis of concrete and historical restoration frameworks.

Title: Reinforcement corrosion testing in concrete and fiber reinforced concrete specimens exposed to aggressive external factors
Authors: W. Raczkiewicz, M. Bacharz, K. Bacharz, M. Teodorczyk
Journal: Materials

Title: Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies
Authors: A. Czajkowska, W. Raczkiewicz, M. Ingaldi
Journal: Production Engineering Archives

Title: Innovative strengthening of RC columns using a layer of a fibre reinforced concrete
Authors: P. Koteš, M. Vavruš, W. Raczkiewicz
Journal: Acta Polytechnica CTU Proceedings

Title: Temperature impact on the assessment of reinforcement corrosion risk in concrete by galvanostatic pulse method
Authors: W. Raczkiewicz, A. Wojcicki
Journal: Applied Sciences

Title: Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes
Author: W. Raczkiewicz
Journal: Science and Engineering of Composite Materials

CONCLUSION

Wioletta Raczkiewicz exemplifies scholarly excellence in civil engineering, particularly in structural analysis and building conservation. The academic and research trajectory demonstrates a commitment to combining theoretical modeling with practical engineering applications. Contributions to educational development, research innovation, and technical diagnostics reinforce a leadership position within the field. With a stable academic tenure and impactful scientific output, the profile remains a valuable asset to structural engineering advancement, especially in concrete technologies and heritage restoration methodologies.

Tengyang Zhu – Materials Science and Engineering – Best Researcher Award

Tengyang Zhu - Materials Science and Engineering - Best Researcher Award

Shandong University - China

AUTHOR PROFILE

SCOPUS

ORCID

SUMMARY

TENGYANG ZHU is a dedicated researcher specializing in membrane separation technologies, with extensive expertise spanning gas, liquid, and ion separations. He has authored over 20 peer-reviewed SCI papers in top-tier journals and has taken a leading role in two competitive research projects. With a strong foundation in materials and chemical engineering, he brings innovation to the design and synthesis of high-performance membranes. His research is not only academically impactful but also addresses critical environmental and industrial challenges, particularly in carbon capture and bioethanol purification.

EDUCATION

Dr. Tengyang Zhu obtained his Ph.D. from the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology in 2022. He earned his Master’s degree from Taiyuan University of Technology in Materials Science and Engineering, and his Bachelor’s degree from Liaocheng University. This academic journey solidified his foundation in materials science, enabling him to pursue complex interdisciplinary research in polymer membranes and advanced separation technologies critical to sustainable energy and environmental solutions.

PROFESSIONAL EXPERIENCE

Dr. Zhu has accumulated significant research experience from his graduate studies to postdoctoral work, focusing on advanced membrane separation. He has led and contributed to several national and provincial research projects. Currently, he is actively involved in developing novel polymer membrane materials for carbon capture and selective ion separation. He has also been entrusted with independent project leadership, managing research funding, collaborating across institutions, and mentoring students and junior researchers in the laboratory.

RESEARCH INTEREST

His core research interests lie in membrane-based separation processes, including gas separation, pervaporation, and ion selectivity. He focuses on the development of high-efficiency polymer and composite membranes with tailored structures and functionalities. Dr. Zhu is particularly invested in green and scalable fabrication techniques, the understanding of transport mechanisms, and applications in energy-efficient purification and environmental remediation, such as ethanol dehydration and CO₂ capture.

AWARD AND HONOR

Dr. Zhu has secured prestigious research grants, including the Shandong Postdoctoral Science Foundation and the Natural Science Foundation of Shandong Province. These competitive awards recognize his potential and innovation in membrane research. Additionally, his multiple publications in high-impact journals and the filing of national patents highlight the academic and technological value of his contributions to chemical engineering and material sciences.

RESEARCH SKILL

Dr. Zhu is proficient in synthesizing and characterizing membrane materials using a wide array of techniques including SEM, TEM, and XRD. He demonstrates deep expertise in designing membranes with multifunctional properties and in exploring their separation mechanisms. His skillset covers polymer engineering, nanomaterials integration, and thin-film composite fabrication, positioning him as a capable researcher adept in both theoretical understanding and practical applications of separation technology.

PUBLICATIONS

Title: Coordination-enhanced ionic elastomers: Durable, self-healing, and multimodal sensors for wearable electronics and robotics
Authors: QingMing Kong, Yu Tan, Haiyang Zhang, Tengyang Zhu, Xu Wang
Journal: Chemical Engineering Journal

Title: High‐Performance and Scalable Organosilicon Membranes for Energy‐Efficient Alcohol Purification
Authors: Tengyang Zhu, Dongchen Shen, Jiayu Dong, Huan Liu, Qing Xia, Song Li, Lu Shao, Yan Wang
Journal: Advanced Functional Materials

Title: Mimosa‐Inspired Body Temperature‐Responsive Shape Memory Polymer Networks: High Energy Densities and Multi‐Recyclability
Authors: Qingming Kong, Yu Tan, Haiyang Zhang, Tengyang Zhu, Yitan Li, Yongzheng Xing, Xu Wang
Journal: Advanced Science

Title: Healable, Recyclable, and Upcyclable Gel Membranes for Efficient Carbon Dioxide Separation
Authors: Jing Xiao, Tengyang Zhu, Haiyang Zhang, Wei Xie, Renhao Dong, Yitan Li, Xu Wang
Journal: Angewandte Chemie International Edition

Title: Controllable Hydrogen-bonded Poly(dimethylsiloxane) (PDMS) Membranes for Ultrafast Alcohol Recovery
Authors: Tengyang Zhu, Jiayu Dong, Huan Liu, Yan Wang
Journal: Materials Horizons

Title: TFC membrane with in-situ crosslinked ultrathin chitosan layer for efficient water/ethanol separation enabled by multiple supramolecular interactions
Authors: Qing Xia, Tengyang Zhu, Zhengze Chai, Yan Wang
Journal: Advanced Membranes

CONCLUSION

Tengyang Zhu’s academic rigor, publication record, and leadership in innovative research projects make him a standout contributor in the field of membrane technology. His work bridges fundamental science and industrial application, advancing cleaner energy and environmental sustainability. With his ongoing projects and international publications, he is poised to make long-term contributions to the development of high-performance separation materials and systems.

Weiwei Zhang – Materials Science and Engineering – Best Researcher Award

Weiwei Zhang - Materials Science and Engineering - Best Researcher Award

Heze University - China

AUTHOR PROFILE

SCOPUS

🧪 RESEARCH THEMES

Dr. Weiwei Zhang’s core research themes include nanocomposite flame retardancy, interpenetrating polymer networks, polysilsesquioxane-based reinforcement systems, and smart polymer design. Her mission is to create safer, smarter, and more sustainable materials through the innovative integration of polymer science, thermal chemistry, and structural engineering. With a passion for both scientific discovery and practical application, her work seeks to enhance safety performance across industries while promoting greener chemical practices. Dr. Zhang continues to push the boundaries of material science to meet the challenges of the modern world.

🎓 EARLY ACADEMIC PURSUITS

Dr. Weiwei Zhang’s academic journey began with a strong foundation in chemical engineering at Qingdao University, where she completed both her bachelor’s and master’s degrees. She further advanced her expertise by earning a Ph.D. in Materials Science from the Beijing Institute of Technology. Throughout her studies, she consistently ranked among the top students, earning prestigious honors such as Outstanding Doctoral Graduate and the Outstanding Dissertation Award. Her early research included fundamental studies on polysaccharide fibers and advanced flame-retardant composites, which set the stage for her deeper investigations into functional polymers and nanocomposites. These experiences not only shaped her scientific outlook but also sparked a long-term passion for addressing material challenges in safety and sustainability through innovative research in flame-retardant systems and structural materials.

🧑‍🏫 PROFESSIONAL ENDEAVORS

Since January 2022, Dr. Zhang has served as an Associate Professor at the School of Chemistry and Chemical Engineering, Heze University. Her appointment came through the university’s prestigious “Outstanding Doctoral Talent Introduction Program,” which recognizes exceptional young researchers. In this role, she has been instrumental in fostering advanced research programs while mentoring students in polymer and composite material sciences. She balances teaching with research leadership, having secured internal and provincial grants. Her integration into the university has helped establish a robust research environment in material engineering and nanotechnology. Dr. Zhang has also contributed to cross-disciplinary collaborations within the institution, further advancing the university’s profile in applied materials research and sustainable chemical engineering practices.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

Dr. Zhang's research is centered on functional polymer materials, high-performance composites, and flame-retardant systems. She has explored advanced synthesis methods for silsesquioxane-based nanomaterials and their applications in vinyl ester and epoxy resin systems. Her work integrates experimental investigations with molecular dynamic simulations to uncover structure-property relationships, particularly focusing on mechanical reinforcement, thermal stability, and fire resistance. Her studies on interpenetrating polymer networks, polyhedral oligomeric silsesquioxanes (POSS), and biodegradable fiber spinning techniques provide practical solutions for industries that require materials with superior flame retardancy and durability. These contributions are particularly relevant in the context of safer construction materials, aerospace composites, and sustainable product design.

🏅 ACCOLADES AND RECOGNITION

Dr. Zhang has been consistently recognized for her scientific excellence. During her Ph.D., she was awarded the Outstanding Doctoral Graduate and received multiple first-class scholarships in acknowledgment of her academic and research performance. Her papers have been published in high-impact journals such as Composites Part A & B, Polymer Degradation and Stability, and Journal of Materials Science. Her publication record showcases her dedication to both scientific rigor and real-world application. In recognition of her growing expertise, she has been granted research funding from the Shandong Provincial Natural Science Foundation, highlighting her emerging leadership in flame-retardant material innovation and her ability to compete at both institutional and provincial levels.

🌍 IMPACT AND INFLUENCE

Through her extensive research on flame-retardant nanocomposites, Dr. Zhang is contributing to safer, more sustainable material technologies. Her work on PMPOSS-modified polymers and POSS-reinforced composites has potential applications in transportation, electronics, and construction sectors that demand high-performance and flame-resistant materials. Her findings on transparency, mechanical integrity, and low-smoke emission properties influence both industrial manufacturing processes and safety standards. She continues to collaborate with leading materials scientists across China, further integrating her research into national material innovation strategies. As a teacher and mentor, she is also shaping future chemists and engineers, extending her influence beyond the lab and into future generations of researchers.

🔮 LEGACY AND FUTURE CONTRIBUTIONS

Dr. Zhang aims to establish herself as a leading voice in flame-retardant and multifunctional material development. Her vision includes the integration of eco-friendly flame retardants, biodegradable polymer systems, and advanced fabrication techniques that reduce carbon footprint. In the future, she intends to pursue further interdisciplinary collaborations—merging polymer chemistry with environmental engineering and nanoscience. By expanding on the mechanisms behind flame suppression and thermal resistance, she hopes to contribute foundational knowledge that can be applied to a broad array of safety-critical industries. Through teaching, publishing, and research leadership, she is building a legacy rooted in material innovation and academic excellence.

NOTABLE PUBLICATIONS

Facile synthesis of polyhedral oligomeric silsesquioxanes with excellent thermosetting, fibrous and crystalline properties

Authors: W. Zhang (Weiwei), Y. Niu (Yukuan), W. Zhang (Wenchao), R. Yang (Rongjie)
Journal: European Polymer Journal, 2024

Analysis on the caged structure of polyhedral oligomeric dodecaphenyl silsesquioxane and its condensation mechanism

Authors: D. Zhang (Donglin), H. Zhou (Hailian), R. Yang (Rongjie), W. Zhang (Weiwei), L. Li (Lamei)
Journal: Journal of Molecular Structure, 2023

Ranjit Bariki – Materials Science and Engineering – Best Researcher Award

Ranjit Bariki - Materials Science and Engineering - Best Researcher Award

UAE University - United Arab Emirates

EARLY ACADEMIC PURSUITS

DR. RANJIT BARIKI began his academic journey with a B.Sc. in Chemistry from Utkal University, followed by an M.Sc. and M.Phil. in Inorganic Chemistry at Sambalpur University. Demonstrating an early inclination toward materials science and catalysis, he pursued and completed his Ph.D. at the National Institute of Technology Rourkela in Material Chemistry, under the supervision of Prof. B.G. Mishra. His doctoral research laid a strong foundation in the synthesis and application of porous hybrid materials for sustainable energy and environmental applications.

PROFESSIONAL ENDEAVORS

Dr. Bariki has held several prestigious roles including Postdoctoral Scientist at the American University of Sharjah and UAE University. He also served as a Senior and Junior Research Fellow in India, working extensively on porous hybrid materials. His academic contributions include teaching undergraduate lab courses and guiding master's theses. He has actively participated in scientific editing roles and contributed to knowledge dissemination through freelance editorial work, combining research with communication.

CONTRIBUTIONS AND RESEARCH FOCUS

His research portfolio is richly diverse and centers on the synthesis of metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and advanced semiconductor materials. Dr. Bariki has explored applications in ammonia production, photocatalytic hydrogen evolution, biomass conversion, CO₂ reduction, and wastewater treatment. His work often emphasizes cost-effective, sustainable methods for energy and environmental remediation, utilizing complex nanostructures and heterojunction systems for enhanced photocatalytic activity.

ACCOLADES AND RECOGNITION

Dr. Bariki’s scholarly excellence is reflected in numerous accolades, including the Prof. Dayanidhi Patnaik Memorial Award by the Odisha Chemical Society, qualification in national competitive exams like CSIR-NET and GATE, and an IMA scholarship for academic merit. With over 1,100 citations, an h-index of 19, and multiple Q1 journal publications, his work has earned global recognition in photocatalysis and energy conversion.

IMPACT AND INFLUENCE

His scientific contributions have significant implications in addressing climate and energy challenges, especially through innovations in ammonia synthesis, green hydrogen production, and pollutant degradation. With multiple publications in high-impact journals such as Applied Catalysis B, Inorganic Chemistry, and Chemical Engineering Journal, Dr. Bariki has established a strong footprint in both academic and industrial research communities across India and the UAE.

LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Dr. Bariki envisions pioneering sustainable catalytic technologies that bridge academic innovation with industrial application. He aims to continue expanding his work on renewable energy solutions and photocatalysis, fostering collaborations globally. His legacy is being built upon novel catalyst architectures and a dedication to mentoring future chemists and engineers in clean energy technologies.

PUBLICATION EXCELLENCE

With over 25 high-impact publications, Dr. Bariki has significantly enriched literature on multifunctional photocatalysts and green chemistry. His papers reflect a sophisticated understanding of charge migration mechanisms, material heterojunctions, and environmental decontamination strategies. His authorship often leads key projects, as seen in his corresponding author roles, emphasizing leadership in research dissemination.

NOTABLE PUBLICATION

Title: Facile synthesis and photocatalytic efficacy of UiO-66/CdIn₂S₄ nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H₂ evolution
Authors: R. Bariki, D. Majhi, K. Das, A. Behera, B.G. Mishra
Journal: Applied Catalysis B: Environmental 270, 118882 (2020)

Title: Plasmonic Ag nanoparticle decorated Bi₂O₃/CuBi₂O₄ photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr (VI) reduction: Insight into electron transfer
Authors: D. Majhi, A.K. Mishra, K. Das, R. Bariki, B.G. Mishra
Journal: Chemical Engineering Journal 413, 127506 (2021)

Title: Facile synthesis and application of CdS/Bi₂₀TiO₃₂/Bi₄Ti₃O₁₂ ternary heterostructure: a synergistic multi-heterojunction photocatalyst for enhanced endosulfan degradation and
Authors: K. Das, R. Bariki, D. Majhi, A. Mishra, K.K. Das, R. Dhiman, B.G. Mishra
Journal: Applied Catalysis B: Environmental 303, 120902 (2022)

Title: A facile reflux method for in situ fabrication of a non-cytotoxic Bi₂S₃/β-Bi₂O₃/ZnIn₂S₄ ternary photocatalyst: A novel dual Z-scheme system with enhanced
Authors: D. Majhi, K. Das, R. Bariki, S. Padhan, A. Mishra, R. Dhiman, P. Dash, et al.
Journal: Journal of Materials Chemistry A 8(41), 21729–21743 (2020)

Title: In-situ synthesis of structurally oriented hierarchical UiO-66 (–NH₂)/CdIn₂S₄/CaIn₂S₄ heterostructure with dual S-scheme engineering for photocatalytic renewable H₂ production
Authors: R. Bariki, S.K. Pradhan, S. Panda, S.K. Nayak, D. Majhi, K. Das, B.G. Mishra
Journal: Separation and Purification Technology 314, 123558 (2023)

Ranjit Bariki – Materials Science and Engineering – Best Researcher Award

Ranjit Bariki - Materials Science and Engineering - Best Researcher Award

United Arab Emirates University - India

🎓 EARLY ACADEMIC PURSUITS

DR. RANJIT BARIKI began his academic journey with a B.Sc. in Chemistry from Utkal University, followed by an M.Sc. and M.Phil. in Inorganic Chemistry at Sambalpur University. Demonstrating an early inclination toward materials science and catalysis, he pursued and completed his Ph.D. at the National Institute of Technology Rourkela in Material Chemistry, under the supervision of Prof. B.G. Mishra. His doctoral research laid a strong foundation in the synthesis and application of porous hybrid materials for sustainable energy and environmental applications.

🏛️ PROFESSIONAL ENDEAVORS

Dr. Bariki has held several prestigious roles including Postdoctoral Scientist at the American University of Sharjah and UAE University. He also served as a Senior and Junior Research Fellow in India, working extensively on porous hybrid materials. His academic contributions include teaching undergraduate lab courses and guiding master's theses. He has actively participated in scientific editing roles and contributed to knowledge dissemination through freelance editorial work, combining research with communication.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

His research portfolio is richly diverse and centers on the synthesis of metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and advanced semiconductor materials. Dr. Bariki has explored applications in ammonia production, photocatalytic hydrogen evolution, biomass conversion, CO₂ reduction, and wastewater treatment. His work often emphasizes cost-effective, sustainable methods for energy and environmental remediation, utilizing complex nanostructures and heterojunction systems for enhanced photocatalytic activity.

🏅 ACCOLADES AND RECOGNITION

Dr. Bariki’s scholarly excellence is reflected in numerous accolades, including the Prof. Dayanidhi Patnaik Memorial Award by the Odisha Chemical Society, qualification in national competitive exams like CSIR-NET and GATE, and an IMA scholarship for academic merit. With over 1,100 citations, an h-index of 19, and multiple Q1 journal publications, his work has earned global recognition in photocatalysis and energy conversion.

🌍 IMPACT AND INFLUENCE

His scientific contributions have significant implications in addressing climate and energy challenges, especially through innovations in ammonia synthesis, green hydrogen production, and pollutant degradation. With multiple publications in high-impact journals such as Applied Catalysis B, Inorganic Chemistry, and Chemical Engineering Journal, Dr. Bariki has established a strong footprint in both academic and industrial research communities across India and the UAE.

🔗 LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Dr. Bariki envisions pioneering sustainable catalytic technologies that bridge academic innovation with industrial application. He aims to continue expanding his work on renewable energy solutions and photocatalysis, fostering collaborations globally. His legacy is being built upon novel catalyst architectures and a dedication to mentoring future chemists and engineers in clean energy technologies.

📚 PUBLICATION EXCELLENCE

With over 25 high-impact publications, Dr. Bariki has significantly enriched literature on multifunctional photocatalysts and green chemistry. His papers reflect a sophisticated understanding of charge migration mechanisms, material heterojunctions, and environmental decontamination strategies. His authorship often leads key projects, as seen in his corresponding author roles, emphasizing leadership in research dissemination.

NOTABLE PUBLICATION

Title: Facile synthesis and photocatalytic efficacy of UiO-66/CdIn₂S₄ nanocomposites with flowerlike 3D-microspheres towards aqueous phase decontamination of triclosan and H₂ evolution
Authors: R. Bariki, D. Majhi, K. Das, A. Behera, B.G. Mishra
Journal: Applied Catalysis B: Environmental 270, 118882 (2020)

Title: Plasmonic Ag nanoparticle decorated Bi₂O₃/CuBi₂O₄ photocatalyst for expeditious degradation of 17α-ethinylestradiol and Cr (VI) reduction: Insight into electron transfer
Authors: D. Majhi, A.K. Mishra, K. Das, R. Bariki, B.G. Mishra
Journal: Chemical Engineering Journal 413, 127506 (2021)

Title: Facile synthesis and application of CdS/Bi₂₀TiO₃₂/Bi₄Ti₃O₁₂ ternary heterostructure: a synergistic multi-heterojunction photocatalyst for enhanced endosulfan degradation and
Authors: K. Das, R. Bariki, D. Majhi, A. Mishra, K.K. Das, R. Dhiman, B.G. Mishra
Journal: Applied Catalysis B: Environmental 303, 120902 (2022)

Title: A facile reflux method for in situ fabrication of a non-cytotoxic Bi₂S₃/β-Bi₂O₃/ZnIn₂S₄ ternary photocatalyst: A novel dual Z-scheme system with enhanced
Authors: D. Majhi, K. Das, R. Bariki, S. Padhan, A. Mishra, R. Dhiman, P. Dash, et al.
Journal: Journal of Materials Chemistry A 8(41), 21729–21743 (2020)

Title: In-situ synthesis of structurally oriented hierarchical UiO-66 (–NH₂)/CdIn₂S₄/CaIn₂S₄ heterostructure with dual S-scheme engineering for photocatalytic renewable H₂ production
Authors: R. Bariki, S.K. Pradhan, S. Panda, S.K. Nayak, D. Majhi, K. Das, B.G. Mishra
Journal: Separation and Purification Technology 314, 123558 (2023)