Chuanshan Dai | Thermal Energy Enginnering | Best Researcher Award

Prof. Dr. Chuanshan Dai | Thermal Energy Enginnering | Best Researcher Award

Professor at Tianjin University, China

Professor Chuanshan Dai currently serves as Professor and Director at the Tianjin Geothermal Research and Training Center within the School of Mechanical Engineering at Tianjin University. A recognized leader in geothermal engineering and sustainable energy systems, Professor Dai has devoted decades to advancing renewable energy solutions, particularly in the fields of heat transfer and geothermal resource utilization. His expertise in both academic research and practical engineering has had a significant impact on the development of clean energy strategies in China and globally. With over 30 years of experience, his academic and applied contributions continue to shape innovative geothermal technologies and influence policy development in renewable energy management.

Profile

Scopus

EDUCATION

Professor Dai began his academic journey at Tianjin University, where he received his Bachelor of Science in 1985. He continued to advance his expertise in thermal sciences by earning a Master of Science from Harbin Institute of Technology in 1988. Driven by an enduring passion for geothermal systems, he pursued a Ph.D. at Okayama University in Japan, which he completed in 2003. Throughout his educational path, he secured prestigious fellowships, including from the Geothermal Institute at Auckland University (New Zealand, 1990), the United Nations University Geothermal Training Programme (Iceland, 1992), and the Monbusho Fellowship from the Japanese government (1999–2003), highlighting his international recognition and cross-border expertise.

EXPERIENCE

With decades of professional and academic service, Professor Dai has played a pivotal role in research and training initiatives focused on geothermal energy. As a faculty member and director at Tianjin University, he has led critical projects in heat transfer optimization, multiphase flow, and district heating. His academic responsibilities include teaching courses such as “Numerical Heat Transfer,” “Multiphase Flow and Heat Transfer,” “Energy Resources and Management,” and “Geothermal Heat Pump.” These courses span both undergraduate and postgraduate levels and emphasize his commitment to nurturing the next generation of energy engineers. He also contributes to policy consultation and infrastructure planning, bridging the gap between theoretical research and field applications.

RESEARCH INTEREST

Professor Dai’s research interests focus on geothermal energy systems, including heat extraction technologies, ground source heat pump systems, district heating solutions, and numerical modeling of heat and mass transfer. His investigations have led to breakthroughs in lattice Boltzmann methods, natural circulation loops, and open-loop deep geothermal wells. His integrated approach combines computational simulation, experimental validation, and applied engineering to improve the efficiency and sustainability of thermal energy systems. He is particularly known for optimizing the thermal performance of borehole heat exchangers and enhancing district heating systems with renewable sources.

AWARD

Professor Dai has been consistently recognized for his contributions to the field of geothermal engineering. His international fellowships in New Zealand, Iceland, and Japan reflect his early promise and sustained excellence. He has also been nominated and honored in various scientific and academic platforms for his leadership in renewable energy research. His educational outreach and innovation have earned him nominations for national and institutional awards, acknowledging both his technical competence and mentorship in the energy sector.

PUBLICATION

Professor Dai’s research has led to numerous high-impact publications, with several cited widely in the geothermal and energy engineering communities. His recent co-authored article, “An implicit lattice Boltzmann flux solver with a projection-based interpolation scheme for the convection-diffusion equation,” published in Computers and Mathematics with Applications (2024), addresses simulation accuracy for heat transfer. Another 2024 work in Renewable Energy, “Optimization of a district heating system coupled with a deep open-loop geothermal well and heat pumps,” offers practical solutions for energy efficiency. In 2022, he co-authored “Analyses and reconstruction of the lattice Boltzmann flux solver,” in the Journal of Computational Physics, cited for improving solver performance. His 2019 article in Applied Energy, “An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design,” has influenced geothermal system design strategies. His 2020 publication in the International Journal of Heat and Mass Transfer, “Heat transfer enhancement based on single phase natural circulation loops,” is referenced for its thermal management techniques. Another 2022 study in Geothermics, “The influence of thermal boundary conditions of wellbore on the heat extraction performance of deep borehole heat exchangers,” provides key insights for system efficiency. These works are widely cited and have made significant scholarly impact in both theoretical and applied energy engineering.

CONCLUSION

Chuanshan Dai exemplifies the qualities of a top-tier researcher through his academic excellence, international fellowships, influential teaching, and pioneering research. His deep commitment to sustainable energy and heat transfer research, along with his global impact and leadership, make him an outstanding candidate for the Research for Best Researcher Award.

Priscila Guaygua-Amaguaña | Environmental Engineering | Best Researcher Award

Ms. Priscila Guaygua-Amaguaña | Environmental Engineering | Best Researcher Award

PhD student | Université de Toulouse | France

🧬 Short Bio

Priscila Guaygua is an accomplished chemist and researcher from Ecuador, currently pursuing her PhD in environmental impact assessment of bio-based materials and eco-design at Toulouse INP in France. With a rich background in chemical engineering and green chemistry, she has worked on various innovative projects, focusing on sustainable processes, environmental impact analysis, and life cycle assessment. Her research interests lie in the valorization of agricultural by-products and eco-friendly materials.

👤 Profile

Orcid

🎓 Education

Priscila’s academic journey is marked by her commitment to green chemistry and eco-friendly innovation. In 2023, she began her PhD at Toulouse INP, focusing on the comparative evaluation of environmental impacts of bio-based materials. She holds a Master of Science in Green Chemistry and Processes for Biomass from the Institut National Polytechnique de Toulouse (2019-2021), and a Chemical Engineering degree from École Nationale Polytechnique in Ecuador (2014-2019).

💼 Experience

  • 2024: Professeur de Chimie at Ipst-Cnam, Toulouse, France – Instructed students on chemical reactions, material quantification, aqueous solutions, and organic synthesis.
  • 2022: Ingénieure Projet Innovation et Environnemental at Veso Concept, Fontenilles, France – Conducted life cycle assessments, eco-design initiatives, and managed R&D projects with a focus on environmental impacts.
  • 2021: Research Assistant at Laboratoire de Génie Chimique, CNRS, Toulouse – Studied carbon dynamics in olive oil production using C-TOOL software.
  • 2020: Research Assistant at Laboratoire de Chimie Agro-industrielle, INRA, Toulouse – Analyzed life cycle of olive pomace for biocomposite production using SimaPro.
  • 2017: Research Assistant at Département de Métallurgie Extractive (DEMEX), EPN, Quito, Ecuador – Assisted in research on metallurgy.

🔬 Research Interest

Priscila’s research focuses on the life cycle assessment (LCA) of agricultural by-products, specifically olive pomace, and their integration into biocomposites. She is dedicated to developing sustainable materials and eco-friendly processes that reduce environmental impacts through innovative approaches in green chemistry and biomass valorization.

🏆 Awards

Priscila has been nominated for several awards in the field of environmental chemistry and eco-design due to her impactful contributions to green chemistry projects, but specific award details are not provided.

📚 Publications

  1. Espadas-Aldana, G., Guaygua-Amaguaña, P., Vialle, C., Belaud, J-P., Evon, P., Sablayrolles, C. (2021). Life Cycle Assessment of Olive Pomace as a Reinforcement in Polypropylene and Polyethylene Biocomposite Materials: A New Perspective for the Valorization of This Agricultural By-Product. Coatings, 11(5), 525. Link.
    Cited by 10 articles.
    Prompt: Life Cycle Assessment of Olive Pomace Biocomposites published in Coatings, 2021.

📝 Conclusion

Priscila Guaygua is a passionate advocate for green chemistry and sustainable material development. Through her research and professional endeavors, she continues to push the boundaries of eco-friendly innovations, contributing significantly to the advancement of environmentally conscious scientific practices.

Ali Nazari – Sustainable Engineering – Best Scholar Award

Ali Nazari - Sustainable Engineering - Best Scholar Award

Sharif University of Technology - Iran

AUTHOR PROFILE

SCOPUS

CURRENT ROLE AND EXPERIENCE

Ali Nazari is an experienced Teaching Assistant with a strong background in construction materials and structural analysis. He has served at prestigious institutions such as Sharif University of Technology in Tehran, Iran, where he assisted in teaching courses on Construction Materials and Concrete Technology under the supervision of Dr. Mohammadhasan Ramesht and Dr. Vahab Toufigh. He also held a Teaching Assistant position at the University of Mazandaran in Babolsar, Iran, focusing on Structural Analysis under the guidance of Dr. Mahdi Nematzadeh.

RESEARCH INTERESTS

Ali’s research interests are diverse and impactful, encompassing Rehabilitation and Strengthening Techniques for Existing Structures, Application of Fiber Reinforced Polymer (FRP), and Polymer Concrete. He is also dedicated to Nondestructive Testing and Structural Health Monitoring using Ultrasonic Techniques, Laboratory Testing of Structural Components, and the Application of Green Construction Materials. Additionally, Ali explores Structural Fire Engineering and the integration of Machine Learning into structural analysis.

HONORS AND ACHIEVEMENTS

Ali has been recognized for his academic excellence, ranking in the top 1% out of approximately 148,429 participants in the National Post-Secondary University Entrance Exam in Iran in September 2017. He also ranked 27th in the nationwide M.Sc. Civil Engineering program entrance exam among over 30,000 candidates in October 2021. His leadership skills were evident when he served as the Secretary of the University of Mazandaran Students' Scientific Association in the Department of Civil Engineering from December 2020 to August 2021.

RESEARCH CONTRIBUTIONS

Ali has made significant contributions to the field of civil engineering through his research. He co-authored a paper with Nematzadeh and Tayebi in 2022, titled “Post-fire impact behavior and durability of steel fiber-reinforced concrete containing blended cement–zeolite and recycled nylon granules as partial aggregate replacement,” published in the Archives of Civil and Mechanical Engineering. In 2024, he collaborated with Toufigh on a paper examining the effects of elevated temperatures and re-curing on concrete containing rice husk ash, which appeared in Construction and Building Materials. Ali also presented a conference paper on the compressive strength analysis of fly ash-based geopolymer concrete using a machine learning approach at the Second International Congress of Civil Engineering, Architecture, Building Materials, and Environment.

APPLICATION OF GREEN CONSTRUCTION MATERIALS

Ali is passionate about sustainable construction practices, particularly the application of green construction materials. His research focuses on developing eco-friendly solutions and incorporating materials like blended cement-zeolite and recycled nylon granules to enhance the durability and environmental impact of construction projects.

NONDSTRUCTIVE TESTING AND STRUCTURAL HEALTH MONITORING

Ali’s expertise extends to nondestructive testing and structural health monitoring, utilizing advanced ultrasonic techniques. His work in this area aims to improve the safety and longevity of structures by identifying and addressing potential issues without causing damage.

PERSONAL INTERESTS AND ACTIVITIES

Outside of his professional and academic pursuits, Ali enjoys a variety of activities that enrich his life. He is an avid reader and translator, enjoys computing, and has a keen interest in research. His hobbies also include swimming, bicycle riding, art, photography, and traveling, all of which contribute to his well-rounded personality and diverse skill set.

NOTABLE PUBLICATION

Effects of elevated temperatures and re-curing on concrete containing rice husk ash

Authors: Nazari, A., Toufigh, V.
Year: 2024
Journal: Construction and Building Materials, 439, 137277

Spatiotemporal deep learning approach for estimating water content profiles in soil layers

Authors: Fazel Mojtahedi, F., Ghaffari, M.A., Rahmati, S., Sadeghi, H., Vanapalli, S.K.
Year: 2023
Conference: E3S Web of Conferences, 382, 22003

Use of InSAR data for measuring land subsidence induced by groundwater withdrawal and climate change in Ardabil Plain, Iran

Authors: Ghorbani, Z., Khosravi, A., Maghsoudi, Y., Javadnia, E., Nazari, A.
Year: 2022
Journal: Scientific Reports, 12(1), 13998

Correction to: Comparison of Soil Strength Parameters in a Small and Large Scale Direct Shear Test (Advances in Science, Technology & Innovation, 10.1007/978-3-030-01665-4_41)

Authors: Mojtahedi, S.F.F., Rezvani, S., Nazari, A.
Year: 2019
Journal: Advances in Science, Technology and Innovation, pp. C1–C3

Correction to: Comparison of Soil Strength Parameters in a Small and Large Scale Direct Shear Test (Recent Advances in Geo-Environmental Engineering, Geomechanics and Geotechnics, and Geohazards, Advances in Science, Technology & Innovation, 10.1007/978-3-030-01665-4_41)

Authors: Mojtahedi, S.F.F., Rezvani, S., Nazari, A.
Year: 2018
Journal: Advances in Science, Technology and Innovation, pp. C1–C3