Oluwatoyin Joseph Gbadeyan | Materials Science and Engineering | Best Researcher Award

Dr. Oluwatoyin Joseph Gbadeyan | Materials Science and Engineering | Best Researcher Award

Postdoctoral Fellow | University of KwaZulu-Natal | South Africa

Dr. Oluwatoyin Joseph Gbadeyan’s research field is anchored in the development of sustainable materials, advanced composites, and innovative manufacturing techniques with applications in mechanical engineering, renewable energy, and the circular economy. His extensive project portfolio includes the design and optimization of bio-composites, bioplastics, and nanomaterials for environmental sustainability and industrial applications. Through his work at leading institutions such as the University of KwaZulu-Natal and Durban University of Technology, he has led groundbreaking projects on hybrid nano-shell plant fiber bio-composites and tribological materials for brake pad applications. His research extends to the valorization of waste materials into high-performance composites, the development of snail shell–derived nanoparticles, and the improvement of additive manufacturing processes to enhance mechanical strength and process efficiency. As a principal investigator and collaborator, he has developed proposals in bioeconomy-focused projects including biofuel, biobricks, and bioplastics, contributing to the advancement of waste-to-energy systems and sustainable product design. His extensive publication record of over thirty peer-reviewed articles, two books, and seventeen book chapters reflects his expertise in nanotechnology, material characterization, and polymer science. Dr. Gbadeyan’s experience spans across academic research, industrial innovation, and technical leadership, where he has successfully guided students and research teams in laboratory experimentation, data analysis, and project execution. His research interests focus on green composite materials, sustainable energy systems, waste valorization, and tribological performance optimization of engineering materials. By integrating materials science with sustainable development principles, he continues to explore innovative approaches that promote eco-friendly manufacturing and circular economy models. His professional activities, including his roles as journal reviewer and committee member for national research funding evaluations, underscore his leadership in advancing the frontiers of sustainable materials research and his dedication to fostering innovation within global engineering communities.

Publications:

Baloyi, R. B., Gbadeyan, O. J., Sithole, B., & Chunilall, V. (2024). Recent advances in recycling technologies for waste textile fabrics: A review. Textile Research Journal, 94(3–4), 508–529.

Khoaele, K. K., Gbadeyan, O. J., Chunilall, V., & Sithole, B. (2023). The devastation of waste plastic on the environment and remediation processes: A critical review. Sustainability, 15(6), 5233.

Gbadeyan, O. J., Adali, S., Bright, G., Sithole, B., & Awogbemi, O. (2020). Studies on the mechanical and absorption properties of Achatina fulica snail and eggshells reinforced composite materials. Composite Structures, 239, 112043.

Gbadeyan, O. J., Muthivhi, J., Linganiso, L. Z., & Deenadayalu, N. (2024). Decoupling economic growth from carbon emissions: A transition toward low-carbon energy systems—A critical review. Clean Technologies, 6(3), 1076–1113.

Gbadeyan, O. J., Adali, S., Bright, G., Sithole, B., & Onwubu, S. (2020). Optimization of milling procedures for synthesizing nano‐CaCO₃ from Achatina fulica shell through mechanochemical techniques. Journal of Nanomaterials, 2020(1), 4370172.

S. Ilangovan | Materials Science and Engineering | Eco-friendly Construction Practices Award

Dr. S. Ilangovan | Materials Science and Engineering | Eco-friendly Construction Practices Award

Professor | SRM Institute of Science and Technology | India

Dr. S. Ilangovan is a distinguished academic and researcher at the SRM Institute of Science and Technology, Ramapuram Campus, Chennai, India, recognized for his significant contributions to engineering and applied sciences. He has authored eight peer-reviewed publications that have collectively garnered 128 citations from 114 documents, reflecting the growing global relevance and academic impact of his work. His research achievements are further evidenced by an h-index of 5, which highlights his consistent scholarly productivity and influence across multiple interdisciplinary domains. Dr. Ilangovan’s research primarily spans the areas of civil and structural engineering, materials science, and sustainable technologies, emphasizing innovative design solutions and environmental resilience. Through collaborations with over 18 co-authors, he has contributed to advancing applied research that bridges theoretical understanding with practical implementation, fostering technological development and knowledge exchange within the academic and industrial sectors. His scholarly endeavors have influenced emerging fields and inspired further studies in engineering design and materials optimization. Beyond publications, Dr. Ilangovan’s work demonstrates a strong societal orientation, focusing on sustainable infrastructure and problem-solving approaches that align with contemporary global development goals. His research contributions, marked by methodological rigor and interdisciplinary perspective, exemplify his commitment to academic excellence, collaborative learning, and the translation of research outcomes into tangible benefits for society. With a steadily growing citation record and recognized expertise, Dr. Ilangovan continues to contribute meaningfully to the scientific community through impactful research, mentorship, and engagement in innovative technological solutions aimed at creating a more sustainable and resilient built environment.

Profile: Scopus | ORCID | Google Scholar
Featured Publications:

Ilangovan, S., Kumaran, S. S., Vasudevan, A., & Naresh, K. (2019). Effect of silica nanoparticles on mechanical and thermal properties of neat epoxy and filament wounded E-glass/epoxy and basalt/epoxy composite tubes. Materials Research Express, 6(8), 0850e2. 
(Cited by: 35)

Ilangovan, S., Kumaran, S. S., & Naresh, K. (2020). Effect of nanoparticles loading on free vibration response of epoxy and filament winding basalt/epoxy and E-glass/epoxy composite tubes: Experimental, analytical and numerical investigation. Materials Research Express, 7(2), 025007. 
(Cited by: 33)

Keerthi Gowda, B. S., Naresh, K., Ilangovan, S., Sanjay, M. R., & Siengchin, S. (2022). Effect of fiber volume fraction on mechanical and fire resistance properties of basalt/polyester and pineapple/polyester composites. Journal of Natural Fibers, 19(13), 6074–6088. 
(Cited by: 30)

Ilangovan, S., Kumaran, S. S., Naresh, K., Shankar, K., & Velmurugan, R. (2023). Studies on glass/epoxy and basalt/epoxy thin-walled pressure vessels subjected to internal pressure using ultrasonic ‘C’ scan technique. Thin-Walled Structures, 182, 110160. 
(Cited by: 28)

Subramanian, J., Selvaraj, V. K., Singh, R., Kakur, N., & Whenish, R. (2024). Acoustical properties of a 3D printed honeycomb structure filled with nanofillers: Experimental analysis and optimization for emerging applications. Defence Technology, 35, 248–258.
(Cited by: 14)

Ahmed A. Kader | Materials Science and Engineering | Excellence in Research Award

Assoc. Prof. Dr. Ahmed A. Kader | Materials Science and Engineering | Excellence in Research Award

Associate Prof | Giza Engineering Institute | Egypt

Assoc. Prof. Dr. Ahmed A. Kader’s research field encompasses a wide spectrum of structural and civil engineering applications, with an emphasis on sustainable materials, structural performance, and innovative construction technologies. His extensive project experience includes consulting and managing large-scale civil infrastructure projects, serving as a Construction Manager and Head of Structural Design Offices for various consultancy firms in Egypt and Saudi Arabia. His expertise lies in the design and analysis of reinforced concrete, foundation engineering, fluid mechanics, and hydrology, coupled with advanced computational tools such as SAP2000, ETABS, SAFE, and BIM modeling systems. His research interests center around the development and optimization of eco-friendly and high-performance materials, particularly geopolymer concrete incorporating industrial by-products like red-mud and zeolite, and the use of alkali-activated binders to enhance mechanical and durability properties. Dr. Kader’s published works reflect his dedication to addressing global environmental challenges through green engineering approaches, including the utilization of recycled aggregates, volcanic tuff, and banana fiber in concrete composites. His projects explore the structural performance of modern construction systems such as precast insulated panels and fiber-reinforced concrete, aiming to improve energy efficiency, load resistance, and long-term durability. Through experimental studies, numerical modeling, and field applications, he contributes to advancements in sustainable infrastructure, construction waste recycling, and smart material integration. His research and consulting collaborations with engineering institutions and industry partners continue to bridge the gap between academic innovation and practical implementation, underscoring his commitment to advancing the civil engineering field through scientific inquiry, sustainable design, and technical excellence.

Profile: Google Scholar | ORCID
Featured Publications:

Attia, M. M., Al Sayed, A., Tayeh, B. A., & Shawky, S. M. M. (2022). Banana agriculture waste as eco-friendly material in fibre-reinforced concrete: An experimental study. Advances in Concrete Construction, 14, 355–368.

Edris, W. F., Abdelkader, S., Salama, A. H. E., & Al Sayed, A. (2021). Concrete behaviour with volcanic tuff inclusion. Civil Engineering and Architecture, 9, 1434–1441.

Shaaban, M., Edris, W. F., Odah, E., Ezz, M. S., & Al-Sayed, A. (2023). A green way of producing high strength concrete utilizing recycled concrete. Civil Engineering Journal, 9(10), 2467–2485.

Edris, W. F., Elbialy, S., El-Zohairy, A., Soliman, A. M., Shawky, S. M. M., Selouma, T. I., ... (2024). Examining mechanical property differences in concrete with natural and synthetic fiber additives. Journal of Composites Science, 8(5), 167.

Al Sayed, A. A. K. A., Al-Waked, Q. F., Shawky, S. M. M., Al-jabali, H. M., & Edris, W. F. (2023). Effect of alkali activated limestone-silica fume blended precursor on performance enhancement of recycled aggregate concrete. Case Studies in Construction Materials, 19, e02661.

Antoni Mir Pons | Material Science and Engineering | Young Scientist Award

Mr. Antoni Mir Pons | Material Science and Engineering | Young Scientist Award

PhD | University of the Balearic Islands | Spain

Mr. Antoni Mir Pons develops research in the field of civil and structural engineering, with a particular focus on the study and application of iron-based shape memory alloys (Fe-SMA) for strengthening existing reinforced concrete structures. His scientific contributions reflect an advanced understanding of materials behavior under semi-cyclic loads and their influence on recovery stresses, which is essential for improving the resilience and sustainability of infrastructures. Currently engaged at the University of the Balearic Islands within the UIB Construct research group, Antoni’s work explores the mechanical performance and practical integration of Fe-SMA as an innovative reinforcement technology. He has presented significant findings at leading international conferences such as the fib PhD Symposium in Civil Engineering and the SMAR Conference in Italy, contributing to global knowledge on structural rehabilitation using smart materials. His previous collaborations with the AMADE group at the University of Girona involved theoretical and experimental studies on reinforced concrete structures strengthened with fiber-reinforced polymer (FRP) laminates, evaluating cracking behavior and proposing refinements to Eurocode and fib Model Code formulations. Antoni’s research also integrates climate resilience aspects, as seen in his participation in projects such as RESTART, focused on mitigating deterioration risks in existing concrete infrastructures under changing environmental conditions. Awarded for his outstanding Master’s Thesis on Fe-SMA reinforcement technology, Antoni continues to bridge experimental engineering with sustainable innovation, contributing to the evolution of active reinforcement systems that reduce environmental impact and extend the lifespan of civil structures. His ongoing doctoral research deepens this line of inquiry, enhancing the understanding of semi-cyclic load effects and establishing a strong foundation for future advancements in structural engineering.

Profile: Scopus
Fearuted Publications:

Experimental study on recovery stress losses in Fe-SMA rebars under semi-cyclic loads considering different activation temperatures and multiple activations. (2025). Construction and Building Materials.

Junsong Yang – Materials Science and Engineering – Best Researcher Award

Junsong Yang - Materials Science and Engineering - Best Researcher Award

Professor | Bengbu Medical University | China

Junsong Yang, affiliated with Bengbu Medical University in China, has established a solid research footprint with contributions that span advanced materials, nanotechnology, and photocatalysis. The profile records 22 publications that collectively garnered 66 citations, reflecting recognition from the scientific community and an h-index of 5, demonstrating both productivity and impact. The works highlight innovative approaches in material design, such as the preparation of Ti₃C₂/SA-TCPP composites through π–π interactions, which significantly improved hydrogen peroxide production and enabled efficient photocatalytic self-Fenton degradation of pollutants like 2,4-dichlorophenol, underscoring the environmental relevance of this research. Another notable study developed ratiometric FRET-encoded Zr-MOF@Au-FAM/TAMRA nanoassemblies integrated with tetrahedral framework nucleic acid-functionalized magnetic beads and DNA walkers, advancing ultrasensitive detection methods for antibiotics such as enrofloxacin and ciprofloxacin, indicating a strong interdisciplinary connection between chemistry, biotechnology, and environmental safety. The author’s research trajectory shows a consistent focus on combining functional nanomaterials with catalytic and sensing applications, addressing both energy conversion and pollution remediation challenges. Co-authorship with 55 collaborators reveals an extensive professional network, enhancing the interdisciplinary scope of the research. The publication record in high-impact journals, including Separation and Purification Technology and Chemical Engineering Journal, illustrates the quality and relevance of contributions in both applied and fundamental science. The consistent engagement with pressing global issues such as environmental pollution, sustainable chemical processes, and biomedical detection technologies positions the work as impactful and forward-looking. While awarded grants are not listed, the productivity and growing citation base suggest increasing recognition and potential for future funded projects. The scholarly activities demonstrate a balance between methodological innovation and practical application, making Junsong Yang’s contributions valuable for advancing modern chemical engineering and materials science, with clear implications for environmental sustainability, energy solutions, and public health monitoring.

Profile: Scopus 
Featured Publications:

Preparation of Ti3C2/SA-TCPP via π–π interaction for the enhanced production of H2O2 and the highly efficient photocatalytic-self-Fenton degradation of 2,4-dichlorophenol. (2025). Separation and Purification Technology.

Ratiometric FRET encoding Zr-MOF@Au-FAM/TAMRA nano assemblies based on tetrahedral framework nucleic acid-functionalized magnetic beads and DNA walker for ultrasensitive quantifying enrofloxacin and ciprofloxacin. (2025). Chemical Engineering Journal.

Ayse Pekrioglu Balkıs | Sustainable Development | Best Researcher Award

Assoc. Prof. Dr. Ayse Pekrioglu Balkıs | Sustainable Development | Best Researcher Award

Assoc. Prof. Dr.-head of civil engineering department | Cyprus International University | Cyprus

Assoc. Prof. Dr. Ayse Pekrioglu Balkıs has established a strong academic and research profile in civil engineering with a focus on sustainable construction materials, geotechnical engineering, and structural performance enhancement. Her scholarly work demonstrates expertise in soil stabilization, utilization of waste materials, and development of innovative composites for environmentally responsible construction practices. She has extensively investigated the use of marble dust, fly ash, polymer fibers, polypropylene, shredded plastics, biochar, sewage sludge ash, and biopolymers to enhance the mechanical and durability properties of concrete, mortar, and earthen materials, thereby contributing to both sustainability and cost-effectiveness in construction. Through her numerous international journal publications and conference presentations, Balkıs has provided valuable insights into improving soil strength, flexural performance of reinforced concrete beams, and the behavior of earthen structures under various environmental and mechanical conditions. Her research also extends to advanced techniques such as the application of multi-walled carbon nanotubes for soil improvement and alkali activation of clays for sustainable earthen brick production. She has supervised several master’s and doctoral theses on diverse topics including stabilization of expansive soils, use of recycled aggregates, performance of mortars with waste materials, and sustainable alternatives to Portland cement, fostering innovation among emerging researchers. In addition to her research contributions, Balkıs has held significant academic leadership roles, including serving as Head of the Civil Engineering Department at Cyprus International University, and has been actively engaged in organizing and reviewing for international conferences and journals. Her involvement in professional committees and symposium leadership highlights her commitment to advancing the field and mentoring the next generation of engineers. With a consistent focus on bridging environmental sustainability and structural performance, Balkıs continues to influence research directions in civil engineering. This impactful body of work demonstrates significant scholarly contributions and practical applications in the built environment. Ayşe Pekrioğlu Balkıs has 324 Citations, 25 Documents, and a 10 h-index.

Profile: Scopus | Google Scholar
Featured Publications:
  • Bicer, K., Yalciner, H., Balkıs, A. P., & Kumbasaroglu, A. (2018). Effect of corrosion on flexural strength of reinforced concrete beams with polypropylene fibers. Construction and Building Materials, 185, 574–588.
  • Balkis, A. P. (2017). The effects of waste marble dust and polypropylene fiber contents on mechanical properties of gypsum stabilized earthen. Construction and Building Materials, 134, 556–562.
  • Yalciner, K. B. H., Kumbasaroglu, A., El-Sayed, A. K., & Pekrioglu Balkıs, A. (2020). Flexural strength of corroded reinforced concrete beams. Structural Journal, 117(1), 29–41.
  • Doven, A. G., & Pekrioglu, A. (2005). Material properties of high volume fly ash cement paste structural fill. Journal of Materials in Civil Engineering, 17(6), 686–693.
  • Ilman, B., & Balkis, A. P. (2023). Sustainable biopolymer stabilized earthen: Utilization of chitosan biopolymer on mechanical, durability, and microstructural properties. Journal of Building Engineering, 76, 107220.

Yaxing Liu – Materials Science and Engineering – Best Researcher Award

Mr. Yaxing Liu - Materials Science and Engineering - Best Researcher Award

lecturer | Taiyuan University of Technology | China

Mr. Yaxing Liu has established strong expertise in the field of mechanical design and theory with a research focus on advanced rolling technology, material forming processes, and fatigue analysis of high-performance steels. His work investigates the mechanisms of strip edge defects, deformation behaviors in composite rolling, and fatigue performance under varying stress conditions, providing valuable insights for enhancing the precision, durability, and efficiency of manufacturing systems. He has contributed to the development of innovative control strategies for trimming processes and created accurate modeling approaches for predicting warping and deformation during steel and aluminum thin strip composite rolling. His research integrates both theoretical modeling and experimental validation to solve complex industrial challenges, ensuring significant improvements in quality control and defect prevention in metal forming industries. In addition to scholarly publications in high-impact journals, Liu’s contributions include patents addressing roll convexity adjustment mechanisms and compensation methods for roll diameter defects in rolling mills, showcasing his ability to translate fundamental research into practical engineering solutions. His continuous engagement in material behavior analysis under stress, defect mitigation techniques, and optimization of manufacturing processes reflects a clear trajectory toward advancing modern mechanical design and metallurgical engineering. With active collaboration across disciplines and consistent innovation in mechanical system optimization, his research strengthens both academic knowledge and industrial application. Yaxing Liu’s work demonstrates a balance of theoretical insight, experimental application, and practical implementation, marking him as a valuable contributor to the development of advanced rolling and forming technologies with wide relevance to the steel and aluminum industries. 155 Citations by 139 documents, 57 Documents, 7 h-index View.

Profile: Scopus
Featured Publications:
  1. Effect of multi‒directional forging on the evolution of intermetallic precipitates and mechanical properties in novel light refractory high-entropy alloys. (2025). Intermetallics.

  2. DDFNet: real-time salient object detection with dual-branch decoding fusion for steel plate surface defects. (2025). Journal of Iron and Steel Research International.

  3. Study on influence and mechanism of steel / aluminum composite thin strips preparation process on interfacial bonding strength. (2025). Suxing Gongcheng Xuebao Journal of Plasticity Engineering.

  4. Research on unbonded defect imaging method of corrugated clad plate based on laser ultrasonics. (2025). Measurement Journal of the International Measurement Confederation.

  5. Effect of two-pass rolling of textured roll and polished roll on surface topography and mechanical properties of 316L stainless steel ultra-thin strip. (2025). Journal of Iron and Steel Research International.

Jialin Liu – Materials Science and Engineering – Best Researcher Award

Jialin Liu - Materials Science and Engineering - Best Researcher Award

Southeast University - China

AUTHOR PROFILE

GOOGLE SCHOLAR

SCOPUS

🎓 SUMMARY

Jialin Liu is a leading researcher in the field of composite materials and structural engineering, with expertise extending from molecular dynamics to macro-scale simulations. A foundation in Naval Architecture and Ocean Engineering laid the groundwork for an impressive academic path that culminated in a Ph.D. from the City University of Hong Kong. The focus of research has consistently bridged theory, experiment, and application, earning recognition across high-impact journals. Through a career deeply rooted in materials science, Liu has demonstrated versatility in tackling real-world engineering challenges with scientifically rigorous solutions, leaving a mark in both academic and applied engineering communities.

🏫 EARLY ACADEMIC PURSUITS

Jialin Liu began academic exploration at the Huazhong University of Science and Technology, earning a B.S. and M.S. in Naval Architecture and Ocean Engineering. Early research included structural mechanics and composite design, highlighting potential for innovation in sandwich structures and Y-shaped core panels. These formative years provided essential hands-on exposure to mechanical testing and material characterization. Driven by curiosity and academic rigor, Liu expanded knowledge through detailed analysis of failure mechanisms and novel fabrication techniques. This period laid the technical and conceptual foundation required for subsequent interdisciplinary research in civil engineering, nanomaterials, and sustainable infrastructure systems.

🏗️ PROFESSIONAL ENDEAVORS IN STRUCTURAL INNOVATION

Following the master's degree, Jialin Liu pursued a Ph.D. at the City University of Hong Kong under the mentorship of Denvid Lau. Research during this period integrated multiscale modeling and experimentation, focusing on cementitious composites and nanomaterial reinforcements. Collaborations with international scholars and contributions to advanced materials journals demonstrate professional dedication. Liu’s engagement in projects involving boron nitride nanosheets, FRP-reinforced concrete, and geopolymer composites reveals a consistent drive to address structural integrity and durability under complex conditions. The academic career continues at Southeast University, where ongoing contributions enrich the Department of Civil and Architectural Engineering with both teaching and research.

🧪 CONTRIBUTIONS AND RESEARCH FOCUS

Jialin Liu’s research primarily investigates the mechanical behavior of composite structures under varied loading conditions, integrating nanoscale and macro-scale analysis. Key focus areas include boron nitride nanosheet-reinforced cement, self-healing composites, and FRP materials under thermal and moisture-induced stresses. Liu applies a combination of experimental, theoretical, and computational tools, including molecular dynamics simulations and finite element analysis. Several papers as corresponding author reflect leadership in the field. By innovating in sustainable building materials and developing methods to enhance structural resilience, Liu contributes significantly to material science, structural engineering, and environmental sustainability with high relevance to modern infrastructure challenges.

🏅 ACCOLADES AND RECOGNITION

With over 20 peer-reviewed publications in prestigious journals such as Applied Surface Science, Materials and Design, and Composites Science and Technology, Jialin Liu’s academic excellence has received global recognition. Multiple first-author and corresponding-author papers underscore independent contribution and leadership in scientific discovery. Collaboration with esteemed researchers including Denvid Lau and Jiayi Liu signals recognition from established academic circles. Many studies have been published in Q1 journals, highlighting the impactful and innovative nature of the research. The ability to publish across interdisciplinary domains—from nanotechnology to structural composites—demonstrates a rare versatility that is widely acknowledged within the scientific and engineering communities.

🌍 IMPACT AND INFLUENCE IN ENGINEERING SCIENCE

Jialin Liu’s work holds transformative potential for future construction practices, especially in enhancing material performance under harsh environmental conditions. By combining nanoscale innovations with structural modeling, Liu advances both scientific knowledge and practical solutions for sustainable infrastructure. Research on moisture resistance, high-temperature tolerance, and self-healing materials aligns well with global climate resilience goals. Findings have informed developments in structural health monitoring and retrofitting practices, offering new paths to prolong infrastructure lifespan. Liu’s interdisciplinary contributions influence peers, policy thinkers, and industry professionals aiming to create safer, smarter, and more durable engineering systems that respond to evolving societal needs.

📘 LEGACY AND FUTURE CONTRIBUTIONS

As a scholar whose work bridges civil engineering, nanotechnology, and material science, Jialin Liu is poised to shape future generations of research and innovation. Current studies on intelligent materials, thermal performance, and composite interfaces suggest a forward-looking vision that addresses both engineering efficiency and environmental responsibility. The legacy is not only in publications but in establishing frameworks that others can build upon. Liu is expected to continue exploring interdisciplinary domains, possibly integrating AI-driven structural diagnostics and data-enhanced modeling. With a clear trajectory of impactful research, Liu’s future contributions will likely redefine boundaries in civil materials and sustainable infrastructure design.

PUBLICATION

Title: Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores
Authors: J. Liu, J. Liu, J. Mei, W. Huang
Journal: Composites Science and Technology, 159, 87–102, 2018


Title: A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel
Authors: J. Mei, J. Liu, J. Liu
Journal: Composites Part A: Applied Science and Manufacturing, 102, 28–39, 2017


Title: Two-dimensional nanomaterial-based polymer composites: Fundamentals and applications
Authors: J. Liu, D. Hui, D. Lau
Journal: Nanotechnology Reviews, 11(1), 770–792, 2022


Title: Mechanical response of a novel composite Y-frame core sandwich panel under shear loading
Authors: J. Liu, T. Zhang, W. Jiang, J. Liu
Journal: Composite Structures, 224, 111064, 2019


Title: Bending response and failure mechanism of composite sandwich panel with Y-frame core
Authors: J. Liu, Z. He, J. Liu, W. Huang
Journal: Thin-Walled Structures, 145, 106387, 2019


Title: Temperature effects on the compressive properties and failure mechanisms of composite sandwich panel with Y-shaped cores
Authors: J. Zhou, Y. Wang, J. Liu, J. Liu, J. Mei, W. Huang, Y. Tang
Journal: Composites Part A: Applied Science and Manufacturing, 114, 72–85, 2018

Dr. Yuhai Dou – Materials Chemistry – Best Researcher Award

Dr. Yuhai Dou - Materials Chemistry - Best Researcher Award

University of Shanghai for Science and Technology - China

AUTHOR PROFILR

GOOGLE SCHOLAR

🧬 SUMMARY

Dr. Yuhai Dou is a trailblazing materials scientist specializing in atomically thin nanomaterials for energy conversion and storage. With a Ph.D. from the University of Wollongong and extensive research experience across China and Australia, he has pioneered several high-impact studies in electrocatalysis, water splitting, and rechargeable batteries. Dr. Dou is a Professor at the University of Shanghai for Science and Technology and has served in roles such as ARC DECRA Fellow and Research Fellow at Griffith University. He boasts a publication record of over 90 papers in top-tier journals with an H-index of 45, over 7500 citations, and coverage in leading science media outlets. His innovations have been recognized through multiple awards, fellowships, and funded projects totaling millions in CNY and AUD. He continues to contribute significantly to next-generation energy materials research and global scientific collaboration.

📘 EARLY ACADEMIC PURSUITS

Dr. Yuhai Dou began his academic journey in materials science at Central South University, where he earned both his bachelor's and master's degrees with a focus on powder metallurgy. During his early career, he displayed an aptitude for applied research, developing high-silicon aluminum alloys and oxide dispersion-strengthened steels. His passion for advanced materials led him to pursue doctoral studies at the University of Wollongong under the guidance of esteemed mentors like Prof. Shi Xue Dou and A/Prof. Ziqi Sun. His Ph.D. focused on atomically thin nanomaterials for lithium/sodium-ion batteries and catalytic oxygen evolution reactions. A notable milestone during his doctoral years included a visiting research stint at Beihang University, where he explored superwetting materials for oil spill collection. These formative years equipped Dr. Dou with a solid foundation in nanomaterials, electrochemistry, and sustainable energy technologies, which continue to shape his scientific pursuits today.

🏛️ PROFESSIONAL ENDEAVORS

Dr. Dou's professional journey reflects a dynamic blend of academic excellence and international exposure. He began as an Associate Research Fellow at the University of Wollongong, advancing to Research Fellow and DECRA Fellow at Griffith University, where he explored single-atom catalysts and vacancy engineering. Returning to China, he held professorships at the Shandong Institute of Advanced Technology and currently serves as Professor at the University of Shanghai for Science and Technology. Across these roles, he has led cutting-edge research on atomically thin materials for electrocatalysis and clean energy. Dr. Dou has also been actively involved in mentoring young researchers, chairing academic sessions, and contributing to major international conferences. His strong academic leadership and commitment to translational research have positioned him as a key figure in the global materials science community, driving innovation in sustainable energy technologies.

🔬 CONTRIBUTIONS AND RESEARCH FOCUS

At the core of Dr. Dou’s research is the rational design and manipulation of atomically thin nanomaterials to enhance energy conversion and storage systems. He has made significant breakthroughs in water splitting, H2O2 production, oxygen evolution reaction (OER), and the development of next-generation Li/Na-ion batteries. His research integrates defect engineering, cation-vacancy tuning, and single-atom catalyst design, setting new performance benchmarks in electrocatalysis. Dr. Dou's interdisciplinary approach blends computational modeling and experimental methods, supported by prestigious grants from the ARC and Chinese funding agencies. His highly cited reviews and original articles, including in Chemical Reviews and Nature Communications, have influenced academic and industrial strategies toward green energy. Through collaborations and keynotes, he promotes global dialogue in materials research. His work not only addresses energy sustainability but also contributes to the foundational understanding of two-dimensional material science.

🏆 ACCOLADES AND RECOGNITION

Dr. Dou's outstanding research achievements have earned him numerous national and international honors. He is a recipient of the ARC DECRA award, IAAM Medal Nomination, and the China Top Cited Paper Award. His excellence in innovation was recognized with the Military Medal by the Shanghai Government and the “5150” Talent Plan of Jinan. Additional accolades include the Distinguished Expert of Jinan, Taishan Scholar title, and several early-career research grants from Griffith University. His academic leadership is reflected in invitations as keynote speaker, session chair, and panelist at global conferences. With awards from prestigious institutions and governments, Dr. Dou has been consistently identified as an emerging leader in energy materials research. These recognitions underscore his ability to bridge academic inquiry with real-world applications, affirming his role as a global influencer in sustainable energy solutions.

🌍 IMPACT AND INFLUENCE

Dr. Yuhai Dou's influence extends beyond publications and patents—his work impacts global energy policy and industrial innovation. His studies on efficient water-splitting catalysts and next-generation batteries offer promising solutions to energy challenges. Several of his papers are highly cited, appearing in journals with impact factors exceeding 70, and are frequently spotlighted by science media worldwide. He has played a significant role in guiding early-career scientists through mentorship and collaboration. His participation in international consortia, such as ARC Discovery and Vehicle Auto CRC, reflects his strategic integration of academic insight into industry-relevant projects. Dr. Dou’s research has shaped contemporary understanding of low-dimensional materials and continues to inform best practices in nanomaterials engineering for energy applications. As a thought leader, his global reach and interdisciplinary approach advance the transition toward a more sustainable and energy-efficient future.

🚀 LEGACY AND FUTURE CONTRIBUTIONS

Looking ahead, Dr. Dou is poised to expand the boundaries of nanomaterials science through high-risk, high-reward research. With over 26 million CNY in research grants under his leadership, he plans to deepen exploration into defect-modulated 2D materials and scalable electrocatalysts for hydrogen generation. His vision includes fostering cross-disciplinary research that merges artificial intelligence, advanced spectroscopy, and materials informatics. As a mentor and collaborator, he aims to build a global network for innovation in energy storage technologies. His ongoing contributions will likely redefine efficiency standards in catalysis and battery technologies. Dr. Dou’s long-term impact lies in his ability to inspire scientific curiosity, train future leaders, and engineer practical solutions for global sustainability. His legacy is one of scientific rigor, visionary leadership, and unwavering commitment to advancing clean energy science for societal good.

PUBLICATION

Title: Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets
Authors: Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.S. Park, L. Jiang, J.H. Kim, S.X. Dou
Journal: Nature Communications, 5 (1), 3813 (2014)

Title: Coexisting single‐atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst
Authors: Z. Zhu, H. Yin, Y. Wang, C.H. Chuang, L. Xing, M. Dong, Y.R. Lu, ...
Journal: Advanced Materials, 32 (42), 2004670 (2020)

Title: Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)‐ion batteries
Authors: J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou
Journal: Advanced Science, 4 (10), 1700146 (2017)

Title: 2D Frameworks of C2N and C3N as New Anode Materials for Lithium‐Ion Batteries
Authors: J. Xu, J. Mahmood, Y. Dou, S. Dou, F. Li, L. Dai, J.B. Baek
Journal: Advanced Materials, 29 (34), 1702007 (2017)

Title: Atomic Layer‐by‐Layer Co₃O₄/Graphene Composite for High Performance Lithium‐Ion Batteries
Authors: Y. Dou, J. Xu, B. Ruan, Q. Liu, Y. Pan, Z. Sun, S.X. Dou
Journal: Advanced Energy Materials, 6 (8), 1501835 (2016)

Title: A yolk–shell structured silicon anode with superior conductivity and high tap density for full lithium‐ion batteries
Authors: L. Zhang, C. Wang, Y. Dou, N. Cheng, D. Cui, Y. Du, P. Liu, M. Al‐Mamun, ...
Journal: Angewandte Chemie International Edition, 58 (26), 8824–8828 (2019)

Wioletta Raczkiewicz – Materials Science and Engineering – Best Researcher Award

Wioletta Raczkiewicz - Materials Science and Engineering - Best Researcher Award

Kielce University of Technology - Poland

AUTHOR PROFILE

SCOPUS
GOOGLE SCHOLAR
ORCID

SUMMARY

Wioletta Raczkiewicz is a civil engineering expert with extensive academic and professional engagement in concrete structures, building renovation, and historic building conservation. With nearly three decades of involvement in technical education and structural research, the profile is marked by progressive academic roles at Kielce University of Technology. Key contributions include the development of stochastic models for fiber-reinforced concrete and ongoing dedication to educational and architectural engineering excellence. Current responsibilities as Associate Professor include teaching, mentoring, and research leadership in advanced concrete technologies and structural diagnostics.

EDUCATION

Earned a Master of Engineering in Civil Engineering in 1994 from Kielce University of Technology, with a specialization in Building Renovations and Historic Conservation. The thesis focused on adaptive reconstruction of Villa Zielona into a guesthouse. In 2008, completed a Doctor of Technical Sciences degree in Civil Engineering, specializing in Concrete Structures. The doctoral dissertation investigated stochastic parameter distributions in fiber-reinforced concrete under variable loading, reflecting a high level of analytical and modeling capability within modern structural engineering contexts.

PROFESSIONAL EXPERIENCE

Began professional career in 1995 at the Research Institute of Roads and Bridges in Warsaw, Kielce branch, as a technologist. Continued academic work at Kielce University of Technology from 1997 onward across multiple faculty transformations, evolving from early technical roles to current designation as Associate Professor since December 2023. Over the years, responsibilities have included curriculum development, scientific research, and faculty service. Academic progression reflects long-term contributions in concrete technology, civil infrastructure diagnostics, and the integration of historic and modern construction methods.

RESEARCH INTEREST

Focus areas include fiber-reinforced concrete behavior under variable loads, stochastic modeling in structural engineering, diagnostics of construction materials, and conservation technologies for historical buildings. Interested in the development of innovative rehabilitation solutions and structural assessments through computational and empirical approaches. Emphasizes interdisciplinary integration between modern construction science and architectural heritage preservation. Research aims at improving reliability and sustainability of concrete structures while advancing methodologies in structural health monitoring and damage prediction under real-world operational conditions.

AWARD AND HONOR

Recognized within institutional settings for consistent academic performance and contributions to structural engineering research. While no international honors are explicitly listed, appointment to Associate Professor reflects institutional acknowledgment of scholarly merit and educational impact. Continued involvement in faculty development and mentoring underscores professional credibility and recognition within the academic engineering community. Contributions to doctoral supervision and peer-reviewed scientific work further illustrate recognition and trust in research excellence and educational leadership in civil engineering.

RESEARCH SKILL

Possesses advanced capabilities in stochastic modeling, finite element analysis, material diagnostics, and structural assessment techniques. Proficient in the application of probabilistic methods to evaluate concrete behavior under stress conditions. Skilled in developing interdisciplinary projects involving historic building technologies and sustainable construction practices. Demonstrates technical proficiency in laboratory methods for testing fiber-reinforced composites and interpreting complex data sets for real-world engineering applications. Also experienced in supervising engineering theses and managing collaborative academic research projects with a focus on reliability and material performance.

PUBLICATIONS TOP NOTED

Authored several technical publications in the field of concrete structures and structural modeling. Focus areas in these works include reliability assessment of fiber-reinforced materials and diagnostic techniques in civil engineering structures. Publications contribute to ongoing discourse in probabilistic evaluation of construction materials and are regularly cited within specialized journals of civil engineering and materials science. Key works also address structural behavior under dynamic and cyclic loads, further emphasizing expertise in advanced analysis of concrete and historical restoration frameworks.

Title: Reinforcement corrosion testing in concrete and fiber reinforced concrete specimens exposed to aggressive external factors
Authors: W. Raczkiewicz, M. Bacharz, K. Bacharz, M. Teodorczyk
Journal: Materials

Title: Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies
Authors: A. Czajkowska, W. Raczkiewicz, M. Ingaldi
Journal: Production Engineering Archives

Title: Innovative strengthening of RC columns using a layer of a fibre reinforced concrete
Authors: P. Koteš, M. Vavruš, W. Raczkiewicz
Journal: Acta Polytechnica CTU Proceedings

Title: Temperature impact on the assessment of reinforcement corrosion risk in concrete by galvanostatic pulse method
Authors: W. Raczkiewicz, A. Wojcicki
Journal: Applied Sciences

Title: Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concretes
Author: W. Raczkiewicz
Journal: Science and Engineering of Composite Materials

CONCLUSION

Wioletta Raczkiewicz exemplifies scholarly excellence in civil engineering, particularly in structural analysis and building conservation. The academic and research trajectory demonstrates a commitment to combining theoretical modeling with practical engineering applications. Contributions to educational development, research innovation, and technical diagnostics reinforce a leadership position within the field. With a stable academic tenure and impactful scientific output, the profile remains a valuable asset to structural engineering advancement, especially in concrete technologies and heritage restoration methodologies.