Yadian Xie | Materials Science | Best Researcher Award

Yadian Xie - Materials Science and Engineering - Best Researcher Award

Guizhou Minzu University - China

AUTHOR PROFILE

SCOPUS

SUMMARY

Yadian Xie is a dedicated researcher and academic professional based in Guiyang, Guizhou. He serves as a postdoctoral researcher, associate professor, and doctoral supervisor with extensive expertise in chemistry and material sciences. His scientific work spans cutting-edge innovations in low-dimensional materials, particularly black phosphorus. Over the years, Dr. Xie has led several prestigious research projects funded by national and provincial institutions. His dedication to excellence is reflected in his numerous awards and recognitions. With over 60 high-impact publications and multiple invention patents, Dr. Xie plays a vital role in bridging fundamental research with industrial applications.

EDUCATION

Dr. Yadian Xie earned his Ph.D. in Chemistry through a joint program between Université du Québec, Canada, and the National Center for Nanoscience and Technology, China. This cross-institutional academic background has equipped him with a solid foundation in advanced chemical engineering and nanoscience. His postdoctoral fellowship at Peking University further refined his research capabilities, especially in low-dimensional materials. His educational journey reflects a consistent trajectory toward innovation in material chemistry, making him a knowledgeable and skilled figure in his field. This academic experience provides the basis for his interdisciplinary research and mentoring of future scientists.

PROFESSIONAL EXPERIENCE

Since May 2020, Dr. Xie has served as an Associate Professor at the School of Chemical Engineering, Guizhou Minzu University. From 2017 to 2020, he completed a postdoctoral fellowship at Peking University. His academic career demonstrates a steady progression through significant research and teaching roles. At Guizhou Minzu University, he also contributes to guiding graduate students and supervising doctoral research. His responsibilities include teaching, developing research infrastructure, and leading government-funded projects. His dual roles as researcher and educator position him as a leading figure in chemical engineering education and scientific innovation in Guizhou and beyond.

RESEARCH INTEREST

Dr. Xie’s research primarily focuses on the large-scale synthesis and real-world applications of black phosphorus and other low-dimensional materials. He investigates their optical, electrical, and magnetic properties through both experimental and computational approaches. His work extends to application-oriented research on emerging materials used in batteries and gas sensors. His scientific inquiries aim to understand and exploit the structural behaviors of materials at the nanoscale. This multidisciplinary focus allows him to contribute significantly to materials science, energy storage, and environmental applications, making his research both foundational and practically relevant.

AWARD AND HONOR

Dr. Xie has earned several prestigious awards for his academic and scientific achievements. These include the First Prize for Higher Education Teaching Achievement in Guizhou and the Third Prize for Scientific and Technological Progress in the province. He was also named “Most Outstanding Science and Technology Worker” in Guizhou. Notably, he received recognition for a provincial “Golden Course” in Materials Science and led major innovation projects. His honors reflect a strong commitment to education, research, and technological advancement, highlighting his role as a key contributor to the scientific and academic communities in China.

RESEARCH SKILL

Dr. Xie possesses a wide range of research skills, including chemical vapor transport, photonic crystal synthesis, and computational modeling of low-dimensional materials. He has successfully managed several complex research projects funded by national and provincial agencies. His technical expertise includes developing innovative sensors, battery materials, and advanced alumina compounds. He is also proficient in academic writing, peer review, and patent development. These skills allow him to bridge the gap between theoretical materials science and practical applications, ensuring his research delivers measurable impact in both academia and industry.

PUBLICATIONS

Title: Pyridine-functionalized chiral polyoxometalates via in situ degradation
Authors: Yu Xia, Tao Zhang, Luyu Tian, Hailiang Hu, Gang Li
Journal: Journal of Molecular Structure (2025)

Title: Post-synthetic modification strategy to immobilize acidic units within metal-organic frameworks or covalent organic frameworks for boosted proton conductivity
Authors: Hailiang Hu, Yu Xia, Xin Wang, Yadian Xie, Gang Li
Journal: [Journal not specified in source – likely Chemistry or Materials journal, inferred]

Title: Scalable fabrication of graphene-basalt composite fabric via Layer-by-Layer deposition for efficient treatment of Cr(VI) − contaminated water
Authors: Hanqing Yu, Shijiao Li, Zheng Zeng, Xin Tong, Yadian Xie
Journal: Separation and Purification Technology (2025)

Title: Research progress on enhancing particulate matters removal enabled by triboelectric effect
Authors: Yi Dai, Huan Li, Qiyu He, Yadian Xie, Shuangxi Nie
Journal: [Journal not specified in source – possibly Environmental Science or Materials journal]

CONCLUSION

Yadian Xie exemplifies excellence in research, education, and innovation. His work not only enhances academic understanding but also translates to real-world industrial solutions. Through his leadership in high-impact projects and consistent scholarly output, he contributes to advancing both science and technology in China and globally. His mentorship of future researchers and commitment to teaching excellence solidify his role as a prominent figure in chemical engineering. As a recognized academic and innovator, Dr. Xie’s work continues to influence the development of new materials and sustainable technologies with broad societal impact.

Roshan Khadka – Materials Science and Engineering – Best Researcher Award

Roshan Khadka - Materials Science and Engineering - Best Researcher Award

Plant and Food Research - New Zealand

AUTHOR PROFILE

SCOPUS

🎓 ACADEMIC EXCELLENCE IN CHEMICAL SCIENCE AND MATERIALS ENGINEERING

Roshan Khadka holds a PhD in Chemical Science from the University of Auckland, New Zealand (2019), with a thesis focused on the development of insect olfactory receptor-based biosensors. His academic journey includes a Master’s degree in Advanced Material Engineering from Kongju National University, South Korea (2015), where he studied the enhancement of optoelectrical properties of PEDOT-based thin films, and a Bachelor’s degree in Mechanical Engineering from Kathmandu University, Nepal (2012).

🔬 LEADING RESEARCHER IN MATERIALS SCIENCE AND BIOSENSORS

Currently, Roshan Khadka is an Associate Investigator at The MacDiarmid Institute for Advanced Materials and Nanotechnology and a Scientist at The New Zealand Institute for Plant and Food Research Limited. His work primarily involves the development and application of advanced materials, including biocompatible supercapacitors and conductive polymers for sensor applications. His role is crucial in advancing the frontiers of material science and its practical applications.

🧪 EXPERT IN CONDUCTIVE POLYMERS AND SENSOR TECHNOLOGIES

Roshan's research expertise extends to the development of hybrid conductive polymers and strain sensors, as evidenced by his contributions to publications such as the New Journal of Chemistry and ACS Applied Polymer Materials. His work on enhancing vapor phase hybridized polymers and graphene oxide-based materials highlights his innovative approach to improving sensor performance and material durability.

🔍 PIONEER IN BIOSENSOR TECHNOLOGIES AND INSECT OLFACTORY RECEPTORS

A significant part of Roshan Khadka’s research focuses on biosensors utilizing insect olfactory receptors. His studies have led to advancements in electrochemical detection of odorant compounds, demonstrated in journals like Sensors and Actuators B: Chemical and Biosensors and Bioelectronics. His work aims to create highly sensitive and specific detection systems, contributing to both scientific knowledge and practical applications.

📝 AUTHOR OF HIGH-IMPACT SCIENTIFIC PUBLICATIONS

Roshan has authored several influential papers on topics such as ammonia sensing and electrochemical stability in bioelectronic systems. His publications in journals such as Polymer and Rsc Advances showcase his contributions to the development of innovative materials and sensors, reflecting his commitment to advancing the field of materials science.

🌍 DEDICATED TO GLOBAL RESEARCH AND COLLABORATION

Throughout his career, Roshan Khadka has engaged in international research collaborations and held various roles, including post-doctoral scientist and project assistant. His experience spans multiple countries and institutions, reflecting his dedication to global scientific advancement and interdisciplinary research.

🎓 ACADEMIC TEACHING AND SUPERVISION EXPERIENCE

In addition to his research, Roshan has gained valuable experience as a Graduate Teaching Assistant and Examination Supervisor at the University of Auckland. His role in academic instruction and supervision underscores his commitment to education and mentorship within the scientific community.

NOTABLE PUBLICATION

A comparative study between vapor phase polymerized PPy and PEDOT - Thermoplastic polyurethane composites for ammonia sensing
Authors: F.D.M. Fernandez, R. Khadka, J.-H. Yim
Journal: Polymer
Year: 2021

Insect odorant receptor nanodiscs for sensitive and specific electrochemical detection of odorant compounds
Authors: J.A. Cheema, N. Aydemir, C. Carraher, A. Kralicek, J. Travas-Sejdic
Journal: Sensors and Actuators, B: Chemical
Year: 2021

Highly porous, soft, and flexible vapor-phase polymerized polypyrrole-styrene-ethylene-butylene-styrene hybrid scaffold as ammonia and strain sensor
Authors: F.D.M. Fernandez, R. Khadka, J.-H. Yim
Journal: RSC Advances
Year: 2020

Role of polyethylene oxide content in polypyrrole linear actuators
Authors: R. Khadka, P. Zhang, N. Tuan Nguyen, T.F. Otero, R. Kiefer
Journal: Materials Today Communications
Year: 2020

Synergistic improvement in the performance of insect odorant receptor based biosensors in the presence of Orco
Authors: R. Khadka, C. Carraher, C. Hamiaux, J. Travas-Sejdic, A. Kralicek
Journal: Biosensors and Bioelectronics
Year: 2020

AHMED MOHAMMED BAYOUMY – Materials Science and Engineering – Best Researcher Award

AHMED MOHAMMED BAYOUMY - Materials Science and Engineering - Best Researcher Award

Faculty of Science, Ain Shams University - Egypt

AUTHOR PROFILE

SCOPUS

WORK EXPERIENCE AND EDUCATION:

AHMED MOHAMMED BAYOUMY has extensive experience in teaching and research. He has been a Teaching Assistant at the Faculty of Science, Ain Shams University since December 2018, and previously served as a Demonstrator from February 2013 to December 2018. Ahmed is currently pursuing a PhD in Nanoscience at the Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology (E-JUST) in Alexandria, Egypt, expected to complete in April 2024. He holds an MSc in Biophysics from Ain Shams University, where he conducted significant research on water purification using nanomodified natural polymers.

TEACHING AND LABORATORY INSTRUCTION:

At Ain Shams University, AHMED MOHAMMED BAYOUMY has demonstrated and discussed experiments in physics and biophysics labs for undergraduate students. He has provided assistance in problem-solving sessions and supervised senior students' graduation projects, ensuring they meet their academic requirements and gain practical experience in their fields of study.

RESEARCH IN NANOSCIENCE:

AHMED's PhD research focuses on nanoscience, particularly in the interaction between biopolymers and organic pollutants for water purification. His MSc thesis involved studying the interaction between chitosan biopolymer and ibuprofen to remove ibuprofen from water, combining theoretical molecular modeling and experimental adsorption trials to validate the interaction mechanism.

WATER PURIFICATION RESEARCH:

One of AHMED's significant contributions is his research on water purification using nanomodified natural polymers. His work has demonstrated the potential of biopolymers in removing organic pollutants from water, contributing to advancements in environmental science and sustainable water treatment technologies.

PUBLICATIONS AND ACADEMIC CONTRIBUTIONS:

AHMED has authored multiple research papers in prestigious journals. His publications cover various topics, including the interaction of biopolymers with graphene for bio-electronic applications, polysulfone-based mixed matrix membranes for wastewater treatment, and inkjet-printed supercapacitor electrodes. His work is widely recognized and cited in the scientific community.

COLLABORATIVE RESEARCH:

AHMED has collaborated with numerous researchers and institutions on projects that address global challenges in water treatment and environmental protection. His interdisciplinary approach and dedication to innovation have resulted in significant advancements in his field, showcasing his ability to work effectively in diverse research environments.

ACADEMIC ACHIEVEMENTS:

Throughout his academic career, AHMED has received accolades for his contributions to science and education. His dedication to teaching, research, and collaborative projects has made him a respected figure in the academic community, with a promising future in nanoscience and biophysics research.

NOTABLE PUBLICATION

Physical prospective of polyamide 6 for the consolidation of fragile vegetable tanned Leather artifacts
Authors: Abdel-Maksoud, G., Mohamed, O.A., Mohamed, W.S., Elhaes, H., Ibrahim, M.A.
Year: 2024
Journal: Journal of Cultural Heritage

Polysulfone-based mixed matrix membranes loaded with a multifunctional hierarchical porous Ag-Cu dendrites@SiO2 core-shell nanostructure for wastewater treatment
Authors: Sadek, A.H., Abdel-Karim, A., Mohsenpour, S., Ibrahim, M., Mohamed, G.G.
Year: 2023
Journal: Process Safety and Environmental Protection

Interaction of biopolymers with graphene for bio-electronic applications
Authors: Bayoumy, A.M., Ibrahim, M.A., Osman, A., Abdelmoneim, A.
Year: 2023
Journal: Optical and Quantum Electronics
Volume: 55(7)
Article: 622

InkJet-Printed Supercapacitor Electrodes of Graphene-Carboxymethyl Cellulose Biocomposite Ink
Authors: Bayoumy, A.M., Ibrahim, M.A., Osman, A., Abdelmoneim, A.
Year: 2023
Journal: Solid State Phenomena

Exploring the electronic, optical, and bioactive properties for new modified fullerenes via molecular modeling
Authors: El-Mansy, M.A.M., Bayoumy, A.M., Elhaes, H., Ibrahim, M.A.
Year: 2023
Journal: Optical and Quantum Electronics
Volume: 55(1)
Article: 100